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1 Introduction
Nowadays, non-contact linear guides are proposed for applications in various
technical systems. First of all, the matter of rail mounted high-speed passenger
transportation by maglev trains is well-known. Furthermore, the employment
of magnetic levitation techniques in slower transportation facilities is discussed.
For these applications, a smooth and silent operation of non-contact guides is
a major benefit. This paper describes the derivation of an adjustment directive
for the non-linear and coupled forces of a high comfort elevator guiding system
based on so called electromagnetic ω-actuators.

2 Description of the Guiding System
There are several feedback control strategies for the magnetic suspension of a
vehicle containing six degrees of freedom (DOF; Six DOF without regarding the
vehicle’s velocity in riding direction as a seventh DOF.). The direct control of
every single DOF, the so-called DOF-control, is one possibility.
This paper presents the adjustment of a vehicle’s spatial position by utilising
four electromagnetic ω("omega")-actuators, e.g. introduced in (Morishita &
Akashi 2001) and (Schmülling, Appunn & Hameyer 2008).

2.1 The ω-actuator
The benefit of the ω-actuator compared to standard actuators (Wang, Jin & Liu
2009) as often deployed in high speed maglev trains (Löser 2008) is the supply
of forces in three directions instead of one. One of these actuators is presented
in Figure 1. It consists of a three-legged iron yoke, equipped with permanent
magnets on the outer pole surfaces of the lateral legs and coils around them.
The operation of this actuator is based on the superposition of the permanent
magnets’ fluxes with the electrically excited fluxes. The analytical calculation of
the actuator’s magnetic fluxes is based on the method of the magnetic equivalent
circuit (MEC), which works similarly to an electrical equivalent network. During
operation, three actuating forces occur in the air gaps of the actuator. These
forces are equivalent to the magnetic flux in the respective air gap. Every single
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Figure 1: Cross-section of one ω-actuator.

air gap flux depends on the current of both coils and the length of every single
air gap. This means e.g. readjusting the current in one coil influences all three
forces. Therefore, the forces of an ω-actuator are coupled.

2.2 The Guiding Topology
The actuators can be mounted on opposite edges of a vehicle’s forepart and
backside. That means, four ω-actuators are mounted on one vehicle. In combi-
nation with two guide rails located on opposite sides of the chassis, the complete
guiding system is formed. Taking into account, that the ω-actuator does not
possess an offset force in one direction, which is able to compensate the gravity,
this kind of actuator is predestined for the guiding of vertical transportation ve-
hicles. As an example, an elevator guiding system is introduced and presented
in Figure 2. The Figure shows the elevator car between two guide rails. The
required guding forces are depicted as well. These forces have to be adjusted
by the ω-actuators, which are placed on the roof and beneath the floor of the
elevator car. Figure 3. presents the arrangement of one actuator and the guide
rail. If the elevator car is a rigid body there are five DOF to adjust: The two
remaining translatory DOF x and y as well as the three rotary DOF α, β, and
γ as shown in Figure 2. Due to the light-metal construction of an elevator car,
a deformation of the chassis caused by the electromagnetic forces is expected.
For a compensation, the torsion forces around the vertical z-axis also have to be
adjusted why the torsion angle χ is introduced, which characterises the angular
displacement between roof and floor. The position vector of the elevator car is
defined as follows:

q = (x y α β γ χ)T (1)

To adjust these six quantities and move the elevator car to a central position
(q = 0) an adjustment variable for each DOF must be obtained. Therefore, it
is essential to transform the local forces in each air gap to global forces which
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Figure 2: Elevator car with all actuating forces.

Figure 3: Arrangement of one ω-actuator on the roof of the elevator car.
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Figure 4: Elevator car with six remaining adjustment forces.

only interfere with one of the DOF. It is as well necessary to decouple the forces.
This means, a unique adjustment directive for each global force is required.

3 Force Transformation
In a first step, the aligned forces of the guiding system are combined (q.v.
Figures 2 and 4):

F1 = F1p − F1n

F2 = F2p − F2n

F3 = F3p − F3n

F4 = F4p − F4n

F5 = F5p − F5n

F6 = F6p − F6n

(2)

Each of the six remaining forces is a difference of two quadratic equations and
has to be linearised (Schmülling et al. 2008) to apply a state control (Appunn,
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Schmülling & Hameyer 2010) to the system. One force equation is now a linear
combination of the coils’ currents and the air gap lengths. To describe the
correlation between the local forces and the global forces and torques, which
are able to directly affect every single DOF as a part of the global positioning
vector q, the force transformation is obtained:


Fx
Fy
Mα

Mβ

Mγ

Mχ


︸ ︷︷ ︸

Fglobal

=


1 0 1 1 0 1
0 1 0 0 1 0
0 −dz/2 0 0 dz/2 0

dz/2 0 dz/2 −dz/2 0 −dz/2
−dy/2 0 dy/2 −dy/2 0 dy/2
−dy/2 0 dy/2 dy/2 0 −dy/2


︸ ︷︷ ︸

Tforce


F1

F5

F2

F3

F6

F4


︸ ︷︷ ︸

Flocal

(3)

In this transformation, Fglobal is the vector of the global forces and torques,
Flocal is the vector of the local forces between actuators and guide rails, and
Tforce is the force transformation matrix. dz is the height and dy the width of
the elevator car, which can also be seen in Figure 2. By changing the currents,
the local forces are adjusted. Thus, global currents are required to ensure a
direct control of the global forces. By merging several equations a current
transformation matrix T occurs:


Ix
Iy
Iα
Iβ
Iγ
Iχ


︸ ︷︷ ︸

Iglobal

=


1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1


︸ ︷︷ ︸

T



I1l
I1r
I2l
I2r
I3l
I3r
I4l
I4r


︸ ︷︷ ︸

Ilocal

(4)

Here, Iglobal is the vector of the global currents and Ilocal is the vector of the real
currents in the actuators’ coils. Herewith, the virtual global currents are calcu-
lated, which represent adjustment variables for the global forces. However, the
inverse operation is not possible since the equation system is over-determined:
Eight currents in eight coils have to operate six global currents. An augmen-
tation of the equation system is required to calculate the real currents in the
actuators’ coils by known global currents.
In a first step, it has to be identified what the system’s over-determination
means physically. The answer is: Additional to their ability of affecting the six
global DOF the actuators are able to excite forces, which

1. compensate each other or

2. deform (uncompress) the elevator car.

Thus, these currents do not support the force/torque balance of the elevator
car, but stress the components of the elevator’s chassis and consume additional
energy. For this, it has to be ensured that these global currents are set to zero.
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As further contraints two current equations are introduced:

Ih1 = 0 = I1l + I1r + I2l + I2r + I3l + I3r + I4l + I4r

Ih2 = 0 = I1l + I1r + I2l + I2r − I3l − I3r − I4l − I4r
(5)

As presented, two global variables with auxiliary information are introduced:
Ih1 and Ih2. In this variables additional state information is stored during
transformation and recalled during the inverse transformation. Finally, the
transformation matrix Taug for implementing the feedback control is formed:



Ix
Iy
Iα
Iβ
Iγ
Iχ
Ih1
Ih2


︸ ︷︷ ︸

Iaug

=



1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1


︸ ︷︷ ︸

Taug



I1l
I1r
I2l
I2r
I3l
I3r
I4l
I4r


︸ ︷︷ ︸

Ilocal

(6)

By utilizing the transformations presented to adjust the local forces, global state
space controllers can be drived. The subsequent section describes measuremet
results of the elevator guding system operated by six parallel state controllers,
one for each DOF.

4 Measurements
In several measuremts, the functionality of the entire guiding system is investi-
gated. During operation, the system is excited by external force impulses on the
elevator car’s chassis in several directions. As an example, the force impact in
x-direction on the floor of the elevator car is presented. Fig. 5 shows the exci-
tation response of all DOF. As displayed, all six DOF show an impact response
and a fast disturbance compensation. However, that all DOF controllers show
a reaction is a reasonable result. On the one hand, the force impulse was not
exerted to the barycenter of the elevator car. Due to this, all spatial DOF are
excited as well. Furthermore, the actuators moved out of their desired position.
This produces additional magnetic forces to the actuators and herewith to the
elevator car’s chassis, which leads to a deformation (torsion) of the elevator car.
After t ≤ 1 s all DOF deviations are compensated and the elevator car is back
in its desired position.

5 Conclusion
In a first section, the assembling of the ω-actuator is presented. The function-
ality of the actuator is described and its qualification in guiding systems for
vertical transportation vehicles is accentuated. The problem of mutual influ-
ences between every single actuator force is declared. A current change in one
coil leads to a change of each actuator force. Thereafter, an elevator guiding
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Figure 5: The six measured DOF exited with an impulse in x-direction on the
floor of the elevatorr’s chassis.

system composed of four of these actuators is introduced. The spatial position
of the elevator car within its shaft is defined by position vector q. To ensure a
clear design of a feedback control for this six DOF problem, a transformation
from local adjustment variables to virtual global currents is presented. This
transformation has to be augmented to avoid the over-determination of the sys-
tem and to allow a reciprocal transformation. The complete derivation of the
augmented transformation matrix is presented as well. The result is a practical
approach for an easy control design of systems levitated by ω-actuators. Finally,
the manageability of this procedure is proven by a running magnetically guided
elevator car in a testing facility.
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