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Abstract— This paper describes the improvement of an electro-
magnetic elevator guiding system. Based on an existing system,
which is able to control five spatial degrees of freedom of an
elevator car, a system enhancement is proposed. The system
of five controlled spatial degrees of freedom is augmented by
a sixth degree of freedom: This is the elevator car’s vertical
torsion angle. Contrary to the former system, it is not longer
a precondition, that the elevator car is a rigid body or the
manufacturing tolerances in very high buildings are almost
zero. Therefore, the system presented is more realistic than
its antecessor. The present paper describes the derivation of
the additional torsion controller and compares the two unequal
systems. Benefits and disadvantages of the augmented system are
specified and evaluated.

Index Terms— Electromagnetic actuator, elevator test bench,
force decoupling, guideway transportation, linear guiding system,
magnetic levitation (maglev), mechatronics, modeling, motion
control, simulation

I. INTRODUCTION

Nowadays, more and more high-rise buildings are con-
structed in Asia and other parts of the world. A high require-
ment to these buildings is the design of the traffic infrastructure
within. The focus on improvements of the buildings’ trans-
portation systems rests on the elevator systems since the design
of such a system for very high buildings is always a design
near a technical threshold range. Additionally, new elevators
have to be comfortable and have to possess low-maintenance.
A proposal for a faster but wear-resistant traffic system in

high buildings is the employment of electromagnetic guides
to elevators. These systems promise faster passenger trans-
portation due to the frictionless operation and at least the
same riding comfort as state of the art elevator systems due to
the absent contact between slider and guide rail. In addition,
these guideways have no consumption of lubricants, which is
a further advantage compared to mechanical guideways. In
former works (e.g. [1] and [2]), the assembling and operation
of an elevator test bench is presented, which shows a well
running system. The introduced system demonstrates an elec-
tromagnetic guiding system controlling five of the six spatial
degrees of freedom (DOF) which are depicted in Figure 1.
The elevator car is assumed to be a rigid body. It is fixed in
one DOF by its propulsion device, which is a rope in this

Fig. 1. Arrangement of the actuators on the elevator car (left hand side) as
well as their actuating forces and the elevator’s DOF (right hand side).

case. This is the DOF in vertical z-direction. The other five
DOF are the translatory movements in x- and y-directions
and the rotary movements α, β, and γ around the axes of a
Cartesian coordinate system located at the center of gravity
of the elevator car. A DOF control system is created to
stabilize the elevator car. Measurements during the test bench
operation show a good system response to disturbance forces.
However, the assumption to behave like a rigid body seems
to be not reasonable for an elevator car. Usually, elevator
cars are manufactured in lightweight construction to minimize
the entire mass, which has to be moved. This also counts
for electromagnetic guided elevators. Thus, the elevator car
will not behave like a rigid body and five DOF are not
adequate to describe its spatial motion. The aim of the present
work is to improve the electromagnetic guiding system by
introducing a torsion controller that eliminates an angular
deviation around the vertical z-axis of roof and floor of the
elevator car. This deviation is described as a further DOF
χ. The expectation of reducing displacement in this DOF is
to lower the requirements to manufacturing tolerances of the
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Fig. 2. Flux in an ω-actuator’s cross-section.
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Fig. 3. Elevator test bench.

elevator’s rails and of the elevator car.

II. GUIDING TOPOLOGY

A. Actuators

An important component of the guideway is the so called
guiding shoe, which transmits disturbance forces from the
elevator car to the guide rail. As aforementioned, conventional
guiding shoes are constructed using rollers or slideways.

The electromagnetic alternative presented is the actuator in
ω-shape [3]. This ω-actuator is an electromagnetic actuator
able to excite three independent pulling forces. This is a

significant improvement with respect to conventional u-shaped
actuators [4], which generate a pulling force in one direction
only. Therefore, one ω-actuator replaces three u-actuators. A
further actuator is the magnet module presented in [5], which
controls one complete DOF, i.e. producing a force in one
direction (positive and negative). Nevertheless, the ω-actuator
controls one and a half DOF. Therewith, two ω-actuators
substitute three magnet modules.

Fig. 2 shows the cross-section of an ω-actuator. It consists
of a three-armed iron yoke, mounted with permanent magnets
on the outer pole surfaces, and coils around the lateral arms.
The operation of this actuator is based on the superposition
of a permanent magnet flux ΦPM with an electrically excited
flux ΦEl.

B. Complete System

The actuators are mounted on opposite edges of roof and
floor of the elevator car, i. e. four ω-actuators are mounted
on one car. In combination with two guide rails located on
opposite walls of the elevator shaft, the complete guiding
system is formed (Fig. 1). Altogether, the four ω-actuators
produce twelve pulling forces, organised in pairs along six
action lines. Hence, a total of six forces remain to control the
position of the elevator car, i. e. to control all spatial degrees
of freedom except the elevator’s driving force. These forces
are depicted in Fig. 1 as well. Fig. 3 presents a test bench of
the electromagnetic guides elevator.

C. The Test System’s Optimization Potential

In a first step, the stiffness of the chassis is assumed to
be quite high (the compliance is assumed to be zero); a
deformation due to the electromagnetic forces of the actuating
electromagnets is not expected. Hence, it is assumed, that the
measuring of five local positions is sufficient for a complete
position determination of the elevator car. The five local
positions measured are three times the actuators’ air gaps in
x-direction (at position of forces F1, F2, and F3 corresponding
to Fig. 1) and two times the air gaps in y-direction (at position
of forces F5 and F6 corresponding to Fig. 1). The operation
of this test bench demonstrates a running system, but an
observing of the air gaps at the local position x4 (at position
of force F4 in Fig. 1) reveals a deviation to the ideal position.

Fig. 4. Displacement of one actuator in x-direction measured by air gap
sensor x4 during the elevator’s ride.



Fig. 4 presents the measured position x4 during a ride of the
elevator car from top to bottom of its shaft. It can be seen,
that the the local actuator is not centered in its x-position
but changes the value of its displacment during movement
in z-direction. The other three actuators do not show this
deviation when the elevator rides. This effect demonstrates
that the elevator car is twisted and therefore not comparable
to a rigid body or the manufacturing tolerances of the guide
rails are higher than expected. However, the capturing of five
sensor signals is not sufficient.

D. Utilizing the sixth sensor signal

In a first step, it is investigated, which influence on the
existing system, containing five controlled DOF (5 DOF
mode, as described in [6]), the capturing and utilizing of the
additional x4 sensor signal has. In [7] can be read, how the
five DOF are calculated by five sensor signals. The calculation
procedure is a coordinate transformation from the measured air
gaps into the global DOF. To utilize the sixth sensor signal an
augmented transformation matrix T is introduced:

T =

266664
1/4 0 1/4 1/4 0 1/4
0 1/2 0 0 1/2 0
0 −1/dz 0 0 1/dz 0

1/2dz 0 1/2dz −1/2dz 0 −1/2dz
−1/2dy 0 1/2dy −1/2dy 0 1/2dy

377775 , (1)

with dy as the horizontal distance and dz as the vertical dis-
tance between two ω-actuators. The coordinate transformation
is performed as follows:

q = T · δsensor, (2)

where q is the position vector of the elevator car containing
all five DOF

q = (x y α β γ)T (3)

and δsensor is the vector of the six sensor signals

δsensor = (x1 y1 x2 x3 y3 x4)T . (4)

However, this transformation matrix for utilizing the sensor
signal x4 is not the final solution. It can be seen, that T is
a 6x5 matrix. Therefore, the DOF are exactly determined by
the local air gap sensor signals, but on the other side there
is an infinite number of solutions for the air gap heights by
given DOF. The system is under-determined. This means, if
all DOF are controlled to zero, the local air gaps need not

Fig. 5. The four measured signals of the air gaps in x-direction during the
elevator’s ride.

to be in the central position. In theory, also an impact of the
actuators on the guide rails is possible. The result of a system
observed and controlled in the way described is presented in
Fig. 5. It can be seen, that the four air gaps do not posses
their reference value (0 mm), which would mean that the ω-
actuators are staying in a central x-position around the guide
rails. Instead of that, they are moving in every moment to the
position, which provides the system’s lowest energetic state. To
avoid an undefined system behavior and to avoid the posibility
of impacts a full defined system model has to be obtained.

E. DOF Augmentation

If the elevator test bench shall demonstrate a realistic eleva-
tor system, a sixth measured and controlled DOF is essential.
Therefore, the elevator’s torsion angle χ is introduced, which
is calculated by the further augmented transformation matrix
T6D:

T6D =

2666664
1/4 0 1/4 1/4 0 1/4
0 1/2 0 0 1/2 0
0 −1/dz 0 0 1/dz 0

1/2dz 0 1/2dz −1/2dz 0 −1/2dz
−1/2dy 0 1/2dy −1/2dy 0 1/2dy
−1/dy 0 1/dy 1/dy 0 −1/dy

3777775 (5)

The coordinate transformation of the full determined system
is performed as follows:

q6D = T6D · δsensor, (6)

where q6D is the position vector of the elevator car containing
all six DOF

q6D = (x y α β γ χ)T . (7)

Fig. 6 presents the resulting uncontrolled torsion angle during
operation in 5 DOF mode. As presented, the angle χ is unequal
to zero for the most time.

In addition to the augmented sensor signal transformation
matrix, the force transformation matrix and the current trans-
fomation matrix (introduced in [1]) have to be augmented as
well.
The force transformation matrix, which transforms the local
actuator forces into the global forces and torques, results as

Fig. 6. Uncontrolled torsion angle χ calculated by the measurement results
of four air gap sensors during the elevator’s ride.



follows:
F̃x
F̃y
M̃α
M̃β
M̃γ
M̃χ


=

2666664
1 0 1 1 0 1
0 1 0 0 1 0
0 −dz/2 0 0 dz/2 0

dz/2 0 dz/2 −dz/2 0 −dz/2
−dy/2 0 dy/2 −dy/2 0 dy/2
−dy/2 0 dy/2 dy/2 0 −dy/2

3777775

 F1
F5
F2
F3
F6
F4


(8)

Global values are tagged by the ∼-symbol. The here intro-
duced sixth row describes the transformation from local forces
(F1, F2, F3, F4, F5, and F6) to the torsional moment M̃χ.
The current transformation matrix describes the transformation
from virtual global quantities to local coil currents. Due
to an augmention to an 8x8 matrix described in [1] the
transformation for χ is still implemented, e.g. compare Θ̃h3

in [1] with Ĩχ below:
Ĩx
Ĩy
Ĩα
Ĩβ
Ĩγ
Ĩχ
Ĩh1
Ĩh2

 =

26666666664

1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1

37777777775


I1l
I1r
I2l
I2r
I3l
I3r
I4l
I4r


(9)

Based on these adjustments the control design is explaind in
detail in the following section.

III. 6TH DOF CONTROL UNIT DESIGN

The former sections describe the necessity of a torsion
controller. With an approval of a torsional deformation of the
elevator car and with an observation of the tosion, a further
equation to describe and model the system behavior has to be
obtained. Due to a high torsional stiffnes around x-axis and
y-axis and due to the larger dimensions of the elevator car in
z-direction, only the torsianal deformation around the z-axis
is analyzed

A. Torsion Equations

Before deriving the torsion’s equations two important pre-
definitions are made:
• The main part of the mass is placed in the roof and the

floor of the elevator’s chassis.
• The roof and floor of the chassis are rigid. Thus, the

compliance is located in the walls.
Due to these assumptions the torsion is modeled as a mass-
spring oscillator [8] and the torsion is described by the angular
torsion displacement between roof and floor.

χ = φtop − φbottom. (10)

Roof and floor are comparable to the oscillating mass, the
chassis’ wall is comparable to the tosion’s spring. Hooke’s
law delivers the oscillation differential equation

Mχ − c · χ = Jχχ̈, (11)

with Jχ as the torsion oscillation’s moment of inertia and c
as the stiffness of the chassis. To define the stiffness of the

chassis, an excurse to mechanics of materials is performed.
The chassis’ wall is idealized in its resistance contrary to
an acting torsion moment as a hollow profile. That means,
it is described as a thin-walled self contained cross-section.
A torsional load is affiliated by shear that acts in this cross-
section.
The twist of a profile with length h and under impact of the
torsion moment MT around the z-axis is defined as

χ =
MT · h
G · IT

. (12)

G is the shear module, which describes the characteristic of
the material under a shear load, IT is the tosion’s moment of
inertia, which describes the influence of the profile geometry
on the torsional stiffness. According to this, the differential
torsion equation is derived as follows:

Mχ = Jχχ̈+
G · IT
h

· χ. (13)

B. Derivation of the State Space Equations

The derivation of the state space equations [9] for the spatial
DOF is the same as described in [1], [7], and [2]. Therefore,
in this section the derivation of the state space equations for
the additional DOF χ is presented in detail.
The mathematical modeling bases on the deduced differential
equations. The state variables are the angular position χ and
the angular speed χ̇. These quantities are deviation quantities,
this means they describe the deviation to the reference position
and the reference speed respectively. To avoid a permanent
deviation, the integral of the angular position

∫
χdt is added

to the state variables:

χ =

 ∫
χdt
χ
χ̇

 . (14)

Equation 8 expresses the torsional moment with the local
quantities of the guiding system, the corresponding air gaps.
Including the applied torque and the linearized force equations
follows

M̃χ(∆xi) = dy·(−Fδx·∆x1+Fδx·∆x2+Fδx·∆x3−Fδx·∆x4),
(15)

with ∆xi as the respective deviation to the desired air gap
value and Fδx as the linearization factor of the local forces in
x-direction. After transformation to global quantities results

M̃χ(χ) = dy · (dy · Fδx · χ). (16)

With equation 13 for the angular acceleration follows

χ̈(χ) =
1
Jχ
· (d2

y · Fδx −
G · IT
dz

)χ. (17)

Due to the dependancy of the torsional moment on the coil
currents (I1l to I4r) follows

M̃χ(Ii) = FIxl·(I1l+I2l−I3l−I4l)+FIxr·(I1r+I2r−I3r−I4r),
(18)



with FIxl and FIxr as further linearization factors of the local
forces in x-direction.
The transformation to global quantities yields

M̃χ(Ĩχ, Ĩh2) = FIxl · (
1
2
Ĩχ +

1
2
Ĩh2) +FIxr · (−

1
2
Ĩχ +

1
2
Ĩh2).
(19)

With FIxl = −FIxr results

M̃χ(Ĩχ) = FIxl · Ĩχ. (20)

Finally, for the acceleration in dedendancy to current Ĩχ
follows

χ̈(Ĩχ) =
d2
y

Jχ
· FIxl · Ĩχ. (21)

The state space equation of DOF χ results in

 χ
χ̇
χ̈


︸ ︷︷ ︸

χ̇

=

 0 1 0
0 0 1

0 d2y
Jχ
· Fδx − G·IT

dz·Jχ 0


︸ ︷︷ ︸

Aχ

·
 ∫

χdt
χ
χ̇


︸ ︷︷ ︸

χ

+

 0
0

d2y
Jχ
· FIx


︸ ︷︷ ︸

bχ

· Ĩχ︸︷︷︸
u

(22)

and

y = (0 1 0)︸ ︷︷ ︸
cχ

·

 ∫
χdt
χ
χ̇

 . (23)

Here, Fδx and FIx are linearization factors. These two equa-
tions are the description of the uncontrolled system. Aχ is the
system matrix, bχ the input vector, and cχ the output vector.
The feedthrough value dχ is chosen to be zero, since there is
no direct feedthrough in a real system. Here, y is the output
value of the state space system and not the DOF y.

C. Control Parameters

Due to the eigenvalues located on the imaginary axis the
system is instable. The eigenvalues are placed by feedback of
the state space vector and combination with the input vector.
For feedback the vector k is deployed, which contains a factor
for each state variable. The controlled system is described as
follows:

χ̇ = Aχ · χ + bχ · u (24)

u = −k · χ . (25)

u is the input value, χ is the state vector, and k is the feedback
vector.
Both equations deliver the new system matrix Ak

Ak = Aχ − bχ · χ. (26)

This augmented operation of the elevator guiding system with
six controlled DOF is called 6 DOF mode.

Fig. 7. Torsion angle χ calculated by the measurement results of four air gap
sensors during switching the systems operation mode from five DOF control
to six DOF control.

Fig. 8. Controlled torsion angle χ calculated by the measurement results of
four air gap sensors during the elevator’s ride.

IV. MEASUREMENTS

In a first measurement, the elevator guiding system directly
switches from 5 DOF mode to 6 DOF mode. Fig. 7 presents
the switching process response of torsion angle χ. It can be
seen, that the deviation to the desired value χ = 0 amounts
approximately ∆χ = 1.5 mrad at time t = 0 s. The hard
switching to 6 DOF mode occurs after approximately t = 1.8 s
measurement. The controlled variable χ shows fast motion to
the desired value inclusive a transient oscillation, which lasts
a few seconds. This oscillation depends on the control action
of the other five DOF controllers. Every controller works
completely independent, but influences each other in a real
system. To avoid a disturbing of the five spatial DOF and to
provide smooth and silent operation of the elevator car, the
χ-controller is much slower than the other five controllers.
Also during the elevator car’s ride through the elevator shaft,
the guiding system shows a robust system behavior in 6 DOF
mode. Fig. 8 presents the torsion angle χ when the elvator car
rides from top to bottom of its shaft. In difference to 5 DOF
mode operation, presented in Fig. 6, χ remains on its reference
position. Very small deviations are compensated quite fast.
Furthermore, the ω-actuators remain in their desired position.
This is evaluated by measuring the respective air gap lengths
x1, x2, x3 and x4. The result, which shows the four air gap
sensor signals during the whole ride in vicinity of reference
value zero is shown in Fig. 9. It can be seen, that all actuators



Fig. 9. The four measured signals of the air gaps in x-direction during the
elevator’s ride in 6 DOF mode.

Fig. 10. The six measured DOF exited with an impulse in x-direction on
the floor of the elevator’s chassis.

stay in the desired central x-position around the guide rails
(x = 0). The risk of an actuator’s impact on the guide rails is
averted.
In final measurements, the functionality of the entire guiding
system in 6 DOF mode is investigated. During operation, the
system is excited by external force impulses on the elevator
car’s chassis in several directions. As an example, the force
impact in x-direction on the floor of the elevator car is
presented. Fig. 10 shows the excitation response of all DOF.
As displayed, all six DOF show an impact response and a fast
disturbance compensation. However, that all DOF controllers
show a reaction is a reasonable result. On the one hand,
the force impulse was not exerted to the barycenter of the
elevator car. Due to this, all spatial DOF are excited as well.
Furthermore, the actuators moved out of their desired position.
This produces additional magnetic forces to the actuators
and herewith to the elevator car’s chassis, which leads to a
deformation (torsion) of the elevator car. After a period of
t ≈ 1 s all DOF deviations are compensated and the DOF are
back in their desired position. The entire system works similar
to its antecessor system and the additional torsion controller
has no negative influence to the control quality of the other
five DOF controller.

V. CONCLUSION

A test bench for the validation of an electromagnetic guiding
system for elevator cars is introduced. Advances of a contact-
less guided elevator system are detailed in the beginning.

Thereafter, the design of the elevator test bench is explaind.
Starting with the special kind of actuator implemented to the
elevator car, the complete system setup is presented. After
this, the disadvanteges of the actual state of system, described
in former publications, are declared. These are the systems
inability to compensate manufacturing tolerances as well as
the unrealistic assumption to model the elevator car as a rigid
body. The disadvantages of the former system are proven
and illustrated by measurement results. It is shown, that a
system augmentation from five DOF to six DOF may avoid
the disadvatages presented.
Furthermore, an implementation of an additional torsion con-
troller, to the guiding system for the compensation of manufac-
turing tolerances in realistic systems is described. An approach
for the modeling of this additional DOF is exemplified as
well. Subsequently, the derivation of the torsion controller is
declared in detail.
Finally, the improved system behavior is depicted. Measure-
ments of the air gap sensor signals as well as the new DOF χ
shows a constant abidance on their reference position only
in the new augmented control mode, the so-called 6 DOF
mode. One measurement shows the entire system excited by
external impacts in several directions. The system’s response
is investigated and it is demonstrated that the additional
torsion controller only has a low influence to the other
DOF controllers. Altogether, the measurement results show
a robust state-space controller with a high control quality. The
described disadvatages of the former system are compensated
by the augmented guiding system.
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