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Abstract—Magnetic levitation is still an important issue for
industry and research. Wherever high dynamics, position ac-
curacy, high reliability and low mechanical wear are required,
magnetic levitation is an effective alternative to conventional
technologies. Conventional systems with mechanical guiding have
shown to be limited in speed. For transporting goods over long
distances, levitation can thus lead to a significant saving in
time and cost. This paper describes a control design for an
autonomous magnetically levitated conveyor vehicle with a linear
direct drive for propulsion. Based on a mathematical description
as a 2-rigid-body system with elastic coupling in torsion, a
simulation environment for the vehicle is created. After that, a
degree-of-freedom control is designed for the levitation operation,
whereas a conventional PI control is used for the propulsion. This
control design is based on the representation of the system as a
2-body system as well. The combination of control and simulation
environment offers the opportunity for extensive testing and
optimization before the control is applied to a test bench. By
intensive analysis the stable and efficient operation of the vehicle
is determined. An assortment of measurement results is presented
and discussed in this paper.

I. INTRODUCTION

Globalization goes along with increasing transportation and

traffic, which requires more and more efficient conveyance

technology. Especially in air transportation there is a need

for improving existing capacities. In particular, an increase in

the number of passengers calls for an acceleration in luggage

handling. Conventional conveyor vehicles (e.g. AUTOVER,

BAGTRAX) are however limited in their maximum speed

because of the mechanical guiding. A further development

of transportation capacities is possible by using magnetic

levitation technology. In previous publications [1], [2], an

autonomous magnetically levitated conveyor vehicle is de-

scribed. Due to its also contact-free operating linear drives,

a speed beyond 10 m/s becomes possible. In this paper, a new

control design is presented, which enhances the dynamics and

the stability of this system. In a first step, a mathematical

description of the vehicle as a 2-rigid-body system is estab-

lished. Derived from this description, a simulation model is

build in Matlab/Simulink, which accounts for the non balanced

propulsion and cogging forces of the drive. Thereupon, the

control design is performed and tested within the simulation

environment. After successful tests the control is applied to

a test bench and its validity proven by various experiments.

As a result, a stable levitation with simultaneous propulsion is

reached. Additionally to the control aspects this paper provides

a impression of the power consumption of the overall system.

II. THE CONVEYOR VEHICLE

The vehicle (Fig. 1) consists of a H-shaped aluminum frame

with a levitation/propulsion head at each corner. For mechani-

cal stabilization an aluminum plate, which additionally serves

as loading platform, is mounted on the top of the carrier.

The levitation magnets consist of a classical U-shaped mag-

netic core with permanent magnets on top of each arm and two

coils for producing an adjustable attraction force. The linear

drives for propulsion are located exactly below the levitation

magnets (See Fig. 2). They have a synchronous homopolar

design with a permanent magnet excitation (Fig. 3). To provide

a high excitation flux the motor has two opponent installed

actuators, one above and one under the flux guiding, attached

to one iron yoke. This design provides a high power density,

despite the large air gap. Since the active part of the motors

are mounted on the vehicle, the track is completely passive

and consists only of the levitation rails and the flux guides.

With a system of three light barriers per motor it is possible

to identify the rotor angle by detecting the gaps between the

flux guides with a resolution of 60 degrees (elec.) - sufficient

for a six-step commutation. Furthermore, this angle detection

is used as an incremental positioning system.

Unfortunately, this kind of motor produces high cogging

forces, that have to be considered during the control design

process (section IV), and has appreciable eddy current losses.

To reduce this losses it is imaginable to install the secondary

motor parts only in the areas where acceleration and deceler-

ation is required.

III. MATHEMATICAL DESCRIPTION AND MODELING

The mathematical description of the conveyor vehicle con-

sists of mechanical and electromagnetic aspects. For describ-
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Fig. 1. The conveyor vehicle in its track.

ing the vehicle mechanics a Cartesian coordinate system is

of advantage since it is able to describe the global values

of the vehicle like mass or the moment of inertia. Because

some values are dependent on local quantities (e.g. the airgaps

between the levitation magnet and the rail) a transformation

between the local and the global coordinates has to be deter-

mined. This chapter shows the mathematical abstraction of the

system consisting of the mechanics, the hybrid magnets and

linear drives and the coupling of the two coordinate systems.

A. Mechanical Model

For the purpose of dynamical modeling the vehicle is

described as a multi-body system (MBS) with two elasti-

cally coupled rigid bodies. This description uses Cartesian

coordinates with the six degrees of freedom x, y, z, α, β, γ
as suggested in [3]. These DOFs describe the translational

movements in three directions and the rotations around the

respective axes. Additionally, a further DOF is introduced to

represent the torsion of the framework. The seven DOFs, of

which the meaning is presented in Fig. 4, are combined in a

Fig. 2. One levitation/propulsion head of the vehicle.

yoke
motorwindings

excitation

flux guiding
(secondary motor part)

magnets

Fig. 3. The homopolar motor.

vector

q = (x y z α β γ δ)T (1)

to describe the global position of the vehicle. The governing

equation of an MBS is [4]

Mq̈ + Pq̇ + Qq = f , (2)

where M, P and Q are the mass, damping and stiffness

matrices and f the excitation forces. In this equation the

magnetic levitation forces, the damping forces due to the

eddy-currents induced in the track and the position dependent

propulsion and cogging forces (Fig. 6), which have been

calculated by the finite element method in a previous research

[5], [6], are considered.

B. Modeling of the Hybrid Magnets and the Linear Motors

For the modeling of the hybrid magnet the equation of

the magnetic forces as well as the differential equation of

the magnetomotive force in the coils are required. The first

equation is obtained by the Taylor expansion with break-off

behind the second term to express a linear correlation between

the force Fmag, the airgap d and the magnetomotive force θ
around a specific working point:

Fmag(θ, d) = Fmag(θ0, d0)+(θ − θ0) · ∂Fmag

∂θ

∣∣∣∣
θ0,d0

+(d− d0) · ∂Fmag

∂d

∣∣∣∣
θ0,d0

. (3)

In the operating point the derivatives in (3) are constant values.

For this reason they are replaced by the coefficients kd,mag

and kθ,mag . Furthermore, Δ-values are introduced to describe

deviations from the operating point:

∂Fmag

∂d

∣∣∣
θ0,d0

= kd,mag,
∂Fmag

∂θ

∣∣∣
θ0,d0

= kθ,mag

(d− d0) = Δd, (θ − θ0) = Δθ

. (4)

By using these abbreviations and renaming the static term

Fmag(θ0, d0) to Fmag,0, (3) can be expressed as

Fmag(θ, d) = Fmag,0 + kθ,mag ·Δθ + kd,mag ·Δd . (5)
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rear axis
front axis

Fig. 4. Relation of the global coordinates to the vehicle.

The equation for the magnetomotive force is obtained using

the Kirchhoff’s voltage law containing an ohmic voltage drop

and a magnetic induced voltage:

u = R · θ

N
+ N · dφ(θ, d)

dt
. (6)

The symbol N represents the number of turns of the coils.

Here the Taylor expansion is used again to linearize the flux

near the operating point:

φ(θ, d) = φ(θ0, d0)+(θ − θ0) · ∂φ

∂θ

∣∣∣∣
θ0,d0

+(d− d0) · ∂φ

∂d

∣∣∣∣
θ0,d0

. (7)

As well as (5) the flux formula is reduced by using Δ-values

and the constant coefficients kθ,phi and kd,phi and renaming

the static term φ(θ0, d0):

φ(θ, d) = φ0 + kθ,phi ·Δθ + kd,phi ·Δd . (8)

In a further step this flux is inserted into (6). After solving and

rearranging, the differential equation of the magnetomotive

force is determined:

Δθ̇ =
1

Nkθ,phi
· u− R

N2kθ,phi
· θ − kd,phi

kθ,phi
·Δḋ . (9)

To obtain a variable levitation force, the control has to vary the

voltage in this equation. For delivering the necessary power a

converter is switched between the control signal and the coils.

Since this converter possesses an integrated current controller,

equation (9) has to be adjusted. At first the speed dependent

term can be neglected because the time constant of the current

control is smaller than the mechanical one by far. Furthermore,

a gain value, K, is introduced that describes the ratio between

output current and the voltage input signal. Due to a high DC

link voltage, the time constant of the magnetomotive force is

reduced to T . Altogether, the equation of the magnetomotive

force becomes

Δθ̇ =
NK

T
· u− 1

T
· θ . (10)

The model of the linear drives also contains an electrical and a

mechanical component. Since the electrical one has a similar

description as the according component of the hybrid magnet

it is not enlarged.

As aforementioned, the position dependent propulsion and

cogging forces have to be considered. This is done by intro-

ducing a shape function kθ,prop(x) and a term for the cogging

forces, which have been derived from the simulation results

shown in Fig. 6:

Fprop(x) = kθ,prop(x) · θprop + Fcog(x) . (11)

C. Coupling of local and global Quantities

The position of the conveyor vehicle is described in Carte-

sian coordinates whereas the magnetomotive and mechanical

forces of the magnets and motors are local quantities. For

the description of the overall vehicle system a transformation

between this local and global quantities is required. For this

purpose the two transformation matrices JAB and JBA are

introduced and their derivation exemplified with the torsion

angle δ. The used indices A and B represent local and global

values respectively.

As shown in Fig. 5 the torsional forces distort the front and

rear axis of the vehicle against each other. The torsion angle

can be expressed by

sin(δ) =
1
a
(−Δd1 + Δd2−Δd3 + Δd4) , (12)

where Δdi are the deviations of the air gaps from their

operating point and a the distance between the magnets at

the front and rear axis. With the small-angle approximation

sin(x) ≈ x, (12) is reduced to

δ =
1
a
(−Δd1 + Δd2−Δd3 + Δd4) . (13)

The other DOFs are determined in the same way, which leads

to the Jacobean matrix

JAB =
∂q

∂ΔdT
A

=
∂(x y z α β γ δ)T

∂(d1 d2 d3 d4 dx1 dx2 dy)
. (14)

The values d1...d4 represent the airgaps of the levitation

system, whereas dx1, dx2 and dy describe the displacement of

the motors in x and y direction. The back-transformation JBA

is obtained by inversion of the matrix (14). Since there is only

a negligible coupling between the levitation and the propulsion

system, it is possible to separate the levitation dependent part

xx

front axis rear axis

δ1 δ2

δ = δ1 − δ2

rear axis

Δd4

Δd3

Δd2

front axis

Fd2Fd4

Fd3 Fd1

δ1
Δd1

δ2

a/2

Fig. 5. Torsion of the conveyor vehicle.
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from the transformation matrices as well as the propulsion

dependent part. This transformations are valid for all quantities

except the forces, for which the transformation is obtained by

similar considerations. The resulting matrix is formal equal to

JT
BA:

JABforce = JT
BA = (J−1

AB)T (15)

IV. CONTROL DESIGN

The control system of the vehicle is separated into two parts:

the levitation system with a DOF control scheme on the one

hand, and a conventional PI control for the propulsion on the

other hand.

A. Levitation Control
Uncontrolled magnetic levitation represents an unstable

system. This is based on the negative stiffness of the levitation

magnets, wherefore the zero/pole diagram of one actuator

shows a pole with a positive real value. To achieve a stable

operation, a controller has to be employed that eliminates

the pole on the positive half plane. Two designs are feasible:

one separate controller for each airgap or one controller for

each DOF like suggested in [7]. The single magnet control

has the disadvantage of disturbance transmissions between the

four levitation magnets of the vehicle due to the mechanical

coupling by the frame. With the DOF controller this coupling

is loosened into the independent degrees of freedom in (1).

Hence, this control scheme is chosen. However, with four

actuators only four of this seven DOFs are controllable. These

DOFs are the vertical position, the rotations around the cross

and the direct axis and the torsion, combined in the vector

q̃ = (z α β δ)T . (16)

From the missing DOFs, the lateral guiding is completely

passive, thanks to reluctance forces, i.e. y is not controlled.

The propulsion and the yawing (x, γ) are controlled by the

linear drives.

In the next step the controllers of each DOF in q̃ are designed.

For the topology the PI-state control [8] has been found as

appropriate. The synthesis of the controllers is shown in the

following by dwell on δ exemplary.

Since the DOFs are not directly measurable, they are cal-

culated from four signals representing the gaps between the

actuator and the rails. These airgaps (di) are measured with

eddy-current sensors (Fig. 2) and represent local quantities that

have to be transformed into global coordinates

q̃ = (z α β δ)T = J̃AB · (d1 d2 d3 d4)T (17)

with the transformation matrix J̃AB , which is the levitation

dependent part of (14). The same counts for the other lo-

cal quantities like speed and magnetomotive and mechanical

forces. The starting point of the control design is the global

force equation, that is derived from the local forces by ne-

glecting the gravity and the static magnetic forces:

fB = (Fz Tα Tβ Tδ)T = J̃ABforce · fA = J̃T
BA · fA

= kθ,mag · J̃T
BA ·ΔθA + kd,mag · J̃T

BA ·ΔdA

.

(18)

By means of further transformations and the MBS equation

(2) this formula is solved to

q̈ = M−1
B,(C) · (kθmag

· J̃T
BA · J̃BA ·ΔθB

+ kδmag
· J̃T

BA · J̃BA · q)
. (19)

If expressed element-wise, (19) represents an independent

equation for each DOF. Hence, δ̈ becomes

δ̈ =
1
IT

(a2 · kθmag︸ ︷︷ ︸
kδ

θ

·Δθδ + a2 · kdmag︸ ︷︷ ︸
kδ

d

·δ) . (20)

In the next step the state vector is defined to

xδ = (δ δ̇ Δθδ)T (21)

with the torsion δ, its deviation δ̇ and the magnetomotive

force Δθδ of the coils transformed to global quantities. Now,

with (20), (21), (10) and (14) it is possible to form the state

equations to
⎛
⎜⎝

δ̇

δ̈

Δθ̇δ

⎞
⎟⎠ =

⎛
⎜⎝

0 1 0
kδ

d

IT
0 kδ

θ

IT

0 0 − 1
T

⎞
⎟⎠

︸ ︷︷ ︸
Aδ

⎛
⎜⎝

δ

δ̇

Δθδ

⎞
⎟⎠ +

⎛
⎜⎝

0
0

NK
T

⎞
⎟⎠

︸ ︷︷ ︸
Bδ

·uδ

δ =
(

1 0 0
)

︸ ︷︷ ︸
Cδ

⎛
⎜⎝

δ

δ̇

Δθδ

⎞
⎟⎠ .

(22)

Since the system has no feedthrough, the matrix Dδ is equal

to zero. With these state matrices the feedback gains are

identified. This can be done by several approaches. In this

paper the design is made by the method of Riccati followed

by a fine adjustment using pole placement.

The output values of the controllers have to be transformed

back to local actuator currents by

(I1 I2 I3 I4)T =K · (u1 u2 u3 u4)T

=K · J̃−1
AB · (uz uα uβ uδ)T

(23)

and are given to the power converters afterwards.

Contrary to the fast behavior of the controls for z, α and β
the torsion control is set very slow. With such an adjustment

δ has only a minor dynamical stiffness. This is done because

this DOF is established to compensate static or low-frequency

disturbances only. These are especially unbalanced load and

moving along mechanical tolerances of the track. These align-

ments are for the purpose to minimize the required control

energy.

B. Propulsion Control

Contrary to the high-precision eddy-current sensors of the

levitation system, the propulsion control uses an optical in-

cremental measurement, which detects the gaps between the

secondary motor parts (Fig. 3). This system has a resolution

of only 1cm for which reason a rotation around the vertical
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Fig. 6. The cogging and propulsion forces of the homopolar motor [5], [6].

axis (γ) is poorly measurable. Therefore, and because these

rotations do not occur in a troublesome magnitude, this DOF

is not controlled. The only remaining DOF is the feed x,

that represents the position of the vehicle along the track.

Here a conventional PI-cascade is chosen because there is

no need for a high feed accuracy in a luggage transportation

system. Furthermore, the resolution of the positioning system

is to low for a proper compensation of the motor cogging

forces (Fig. 6). Despite arranging the rear motors 180 electrical

degrees shifted, which reduces the overall cogging forces in

amplitude, there is only every 6 cm a stable position, if the

motors are currentless. Due to efficiency, the nominal position

is quantized to steps of also 6 cm to exclude stopping positions

where motor currents would be needed to hold.

V. SYSTEM SIMULATION

The levitation magnets and the propulsion are able to

generate very high forces. With an insufficient control these

forces may damage the mechanical parts of the vehicle.

Therefore, the mathematical description from section III as

well as the control is cloned in a graphic programmable ODE

solver (Simulink). This provides the opportunity to perform

an overall simulation, which is used to test the control for

its capability and to adjust the control parameters for a stable

and precise operation. Moreover, these simulations provide an

insight into the system behavior before applying the control

to the test bench.

VI. RESULTS

This section describes the measurement results of the test

bench. This includes the control behavior and the power

consumption of the system.

A. Control Behavior

In order to assess the capabilities of the developed control,

multiple experiments are performed. This includes, for exam-

ple, raising the vehicle while launching the levitation system.

Furthermore, many load scenarios are analyzed to simulate the

process of charging the platform with its load, e.g. a suitcase.

All of these experiments have given satisfactory results with

respect to stability.
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Fig. 7. Set point change of the DOFs δ and z.

In Fig. 7 a set point change in the DOFs δ and z is shown.

They rise from zero to 1 mrad in δ and 1 mm in z respectively.

As mentioned in section IV the torsion control is designed to

be very slow. While the jump in z raises all airgaps for 1 mm,

what takes a tenth of a second, the torsion of 1 mrad means

only a change of 0.4 mm in each airgap. Nevertheless, it takes

approx. half a second to reach the new set point. Thus, the

torsion control operates as desired. Furthermore, the diagram

shows an overshot in z. It has its reason in the unbalanced mass

distribution of the vehicle, which causes different accelerations

of the four vehicle corners. Even if a slower control design can

reduce the overshot the dynamic is more important. Besides,

an overshot of 15% does not affect the system operation.

The characteristics of the propulsion system and its influence

on the levitation are investigated by accelerating and moving

the vehicle along the track. The measurements of a set point

change of 2 m are displayed in Fig. 8. While the DOF x shows

the desired behavior (Fig. 8(a)), in z many deviations from the

set point (i.e. z=0) can be seen (Fig. 8(b)). They do not have

their origin in force impacts of the linear drives but are caused

by disturbances of the eddy-current sensors. This is due to the

fact that the rails are not made in one piece but assembled from

many short parts. The appearing joints induce discontinuities

in the eddy-current response. Passing by such a joint leads

to measurement errors that cause the disturbance in z. In the

DOFs α, β and δ this behavior occurs as well. Nevertheless,

the operation of the entire system is not affected because the

nominal air gap is designed to 3 mm. Thus, a sufficient buffer

is provided.

B. Power Consumption

An important aspect of a conveying system is its power

consumption. Especially an increase of the transportation

speed leads to a higher energy absorption. The whole power

consumption consists of four parts: copper losses, iron losses,

losses of the electronic periphery and air friction losses. Up to

10 m/s the air friction can be neglected. The periphery has all

about the same power consumption in every operational point

of ca. 130 W. In the following the copper and iron losses are

examined separately for the levitation and the propulsion.
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Fig. 8. Set point change of the feed and its influence on the levitation system.

1) Levitation Losses: At zero speed the levitation system

has only copper losses from the four levitation magnets.

Because the levitation force is adjustable by changing the

air gap it is possible, even at maximum load, to keep the

coil current near zero that the losses almost vanish. With

movements of the vehicle the control has to compensate

disturbances, which requires more energy. Fig. 9 show the

influence of such disturbances on the power consumption at

a set point change of the propulsion of 2 m. At standstill

and very low speeds the absorbed power consists only of

the static electronic input power of approximately 30 W. With

higher speeds the disturbance grows, especially because of

the mechanical joints of the rails, and the power reaches over

100 W maximum. The average input power of the levitation

system is 43 W, which means that the average compensation

power is only 13 W. This value will increase with the speed.

But the more relevant losses are the iron losses. In [5] it is

shown that the eddy current losses amount to 200 W at 10 m/s

for all four magnets.

2) Propulsion Losses: The iron losses of the linear drives

will increase from zero at standstill to 300 W at 10 m/s [5]. To

compensate the overall iron losses of the system at this speed

the propulsion has to produce a force of

F =
Piron

v
=

500 W
10 m/s

= 50N . (24)
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Fig. 9. Power consumption of the levitation system.

This means that the copper losses are only 20 W at constant

speed.

The overall power consumption of the system at 10 m/s is

calculated to approx. 800 W.

VII. CONCLUSION

This paper describes the mathematical modeling of a mag-

netically levitated conveyor vehicle system and the design of

its control. Using established methods the control is derived

from the mathematical equations. The proper operation of the

system in combination with the control is proven - a stable

levitation operation by simultaneous use of the propulsion is

obtained. All measurements show, that the requirements for a

conveying system are fulfilled. Furthermore, an insight in the

power consumption of the system is given.
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