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Abstract — A method for analyzing magnetic forces in electrical ma-
chines based on electromagnetic finite element simulation is presented.
Sampling of air gap field solution data allows for a Fourier decompo-
sition of magnetic forces and flux densities. A two-dimensional con-
volution gives insight into the spectral decomposition of forces respon-
sible for acoustic noise, vibration and higher torque harmonics. The
approach is applicable to all types of electrical machines that can be
modeled in two dimensions. Application examples with a PMSM and
an induction machine are presented.

I. INTRODUCTION

Higher torque harmonics and magnetically excited noise are
parasitic effects in electrical machines. They are due to the
harmonic forces in the air gap of the machine. Acting on
the permeable material of stator and rotor, not only a con-
stant torque but additional torque harmonics are generated,
as well as radial forces that excite stator vibrations. These
electromagnetic forces can be calculated from the air gap
field.

Electromagnetic finite element method (FEM) analyses
are used to calculate torques, but also allow for a consid-
eration of local values, such as the magnetic flux density dis-
tribution in the air gap. This paper proposes to sample the
air gap field solution data of two-dimensional FEM simula-
tions in time and space domain in order to perform a Fourier
decomposition and a subsequent two-dimensional periodic
convolution of air gap field data. This leads to a geometric
addition of partial force components that can be visualized
by a space vector diagram. The method has been applied to
the radial component of the air gap field for noise analysis
purposes [1], and it is generalized in this paper to the convo-
lution of arbitrary sampled two-dimensional data.

In the following the method and its implementation are
described. First, some basic Fourier theory is introduced.
For an analysis of torque harmonics and noise exciting ra-
dial forces, the method is applied to a sinusoidally fed per-
manent magnet excited synchronous machine (PMSM) and
induction machine (IM) model.

II. CONVOLUTION APPROACH

A. Two-dimensional Fourier decomposition and periodic
convolution

Since the air gap field and the forces are periodic in time
and space, they can be represented by a Fourier series. Let
p : R× R→ R be continuously differentiable. One has

p(x̃, t) =
∞∑

n=−∞

∞∑
m=−∞

Pn,me
j(m∆rx̃+n∆ωt), (1)
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∆ω = 2π
T , ∆r = 2π

U with T,U > 0 the periods in time and
space. The complex Fourier coefficients are determined by

Pn,m =
1
U

1
T

∫ U

0

∫ T

0

p(x̃, t)e−j(m∆rx̃+n∆ωt)dtdx̃. (2)

For a Fourier decomposition, many tools process sam-
pled data yn,m by using the discrete Fourier transformation
(DFT). The two-dimensional DFT is defined by

F (yn,m) = Yn,m =
N−1∑
l=0

M−1∑
k=0

yl,ke
−2πj( nl

N + mk
M ), (3)

where n = 0..(N − 1), m = 0..(M − 1). In order to ap-
proximate the Fourier series coefficients with Fourier trans-
formation coefficients, a full space-time period U and T is
sampled with M and N equidistant steps. The double in-
tegral of (2) can be approximated by sums, and after some
rearrangements the coefficient approximation results to

Pn,m ≈
Yn,m
MN

. (4)

Using Maxwell’s stress tensor, tangential force calculation
are obtained by the multiplication of normal and tangential
air gap field components. The multiplication of values of
two sampled data sets zl,k and z′l,k becomes in the frequency
mode domain a periodic convolution

yn,m = zn,m · z′n,m ⇔ Yn,m = Zn,m ∗ Z ′n,m, (5)

with

Zn,m ∗ Z ′n,m =
1

MN

N−1∑
l=0

M−1∑
k=0

Zl,k · Z ′n−l,m−k

≡
∑
l,k

Qn,m,l,k ·MN.

(6)

B. Sampling of FEM solution data

In practice, the sampled data are stored into arrays y, z
and the two-dimensional DFT is performed by a computer
routine. The resulting matrices Y, Z contain the complex
Fourier transformation coefficients. Provided that a full
space-time period is sampled, the row number n of Y or Z
corresponds to the temporal ordinal number and the column
number m corresponds to the spacial ordinal number, which
is usually called mode or number of pole pair. Each matrix
entry Yn,m or Zn,m can be interpreted as a one-dimensional
sinusoidal wave. Assuming that matrix z contains sampled
data of the radial component of the magnetic flux density in
the air gap, a single sinusoidal wave can be expressed by

br(x, t) = 2|Zn,m
MN

|Vs
m2
· cos(mx+ n∆ωt+ arg(

Zn,m
MN

)).
(7)
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Fig. 1. One-dimensional Fourier decomposition of the output torque[4] of
the PMSM model, n = 4500rpm, higher harmonics.

This notation is common in analytical considerations of
higher air gap field harmonics, [2, 3]. Note that the same
harmonic wave is obtained by inversion of the argument of
the cosine function, and hence an inversion of the sign of the
ordinal numbers. This indicates the symmetry of the DFT
transformed matrix

Zn,m = Z∗−n,−m. (8)

C. Calculation of magnetic forces

Based on the Maxwell stress tensor, the magnetic force vec-
tor can be expressed in polar coordinates by

ppp = pppt + pppr

= brht eeet +
1

2µ0
[ (br)2 − (bt)2 ] eeer,

(9)

where eeet, eeer are polar unit vectors. Discrete data of the ra-
dial and tangential air gap field solution brn,m, b

t
n,m can be

obtained by data sampling. Since the DFT is a linear map, a
Fourier transformation and a division by (MN)2 according
to approximation (4) results to

F (pppn,m)
(MN)2

= Brn,m ∗Ht
n,m eeet

+
1

2µ0
[Brn,m∗Brn,m−Btn,m∗Btn,m] eeer.

(10)

The tangential component of the air gap field is very small
when compared to the radial one. Therefore, (10) is fre-
quently approximated by the simplified Maxwell stress ten-
sor. Then the Fourier series coefficients of the force densities
result to

PPPn,m =
F (pppn,m)
MN

=

MN ·Brn,m∗Ht
n,m︸ ︷︷ ︸

=P t
n,m

eeet +
MN

2µ0
·Brn,m∗Brn,m︸ ︷︷ ︸
=P r

n,m

eeer. (11)

Two convolution products remain. The tangential forces
generate the torque and the radial forces are the main cause
for vibration and noise radiation of electrical machines. Nor-
mally, the magnetic force density coefficients P rn,m and
P tn,m are obtained by first multiplying the air gap fields and
transferring to the space-time domain. Alternatively, using
the convolution allows for a consideration of the summands
Qn,m,l,k in (6) as explored in the next section.

D. Visualization with a space vector diagram

Equation (6) shows that the matrix entries of Z are com-
bined by pairs and add up to the total Fourier transformation
component Yn,m. The geometric addition can be supported
by an illustration in the complex plane called space vector
diagram, Fig.2. Implemented to a computer routine, partial
force Fourier series summands Qn,m,l,k and the associated
air gap field pair Fourier components are stored for a subse-
quent visualization.

In the following the four pole PMSM is considered,
Fig.3. A two-dimensional FE simulation reveals that besides
the constant torque component, undesired torque harmonics
emerge, especially at f = 1800Hz, Fig.1. The proposed
convolution approach is applied. The radial magnetic flux
density component br and the tangential magnetic strength
component ht are sampled. The convolution routine trans-
fers the sampled data into the frequency mode domain and
generates the space vector diagram of the corresponding tan-
gential Fourier series component P t24,0, Fig.2. The vector
chain represents the geometric addition of partial force vec-
tors

Ql,k = Brl,k ·Ht
n−l,m−k. (12)

The involved air gap field harmonic combination pairs are
listed in Tab. I. The ordinal numbers l, k, n−l,m−k and the
angle have to be added according to (6) and (12). Obviously,
only a small number of pairs contribute significantly to the
total Fourier series force component P t24,0. The vectors Ql,k
are arranged according to their magnitude. Only the first six
partial force vectors are depicted. Therefore, a small gap
between the vector chain and the total force vector remains.

2|P
t
24,0| = 845 N/m

2

arg(P
t
24,0) = 132

f = 1800Hz, n = 24, m = 0

P
t
24,0

1
Q26,-26

2
Q-2,26

3
Q18,-18

4
Q2,-2

5
Q14,-14

6
Q30,-30

Fig. 2. Space vector diagram, I = In.

TABLE I. AIR GAP FIELD FOURIER SERIES COMPONENTS FOR I = In .

Vec l k 2|Br|[Vs/m2] arg(Br)[◦] f [Hz]
1 26 -26 0.043677 0.0 1950
2 -2 26 0.027674 46.5 -150
3 18 -18 0.081638 180.0 1350
4 2 -2 1.053000 6.6 150
5 14 -14 0.141511 0.3 1050
6 30 -30 0.048354 180.0 2250

Vec n− l m− k 2|Ht|[A/m] arg(Ht)[◦] f [Hz]
1 -2 26 21793 136.4 -150
2 26 -26 12481 90.1 1950
3 6 18 1559 -25.12 450
4 22 2 113 66.5 1650
5 10 14 795 102.3 750
6 -6 30 2028 51.4 -450



(a) PMSM. (b) IM.

Fig. 3. Scaled cross sections of example machines.

TABLE II. MACHINE DATA.

Machine data PMSM IM
Rated power Pn 4 kW 30 kW
Rated speed nn 4500 rpm 3000 rpm
Rated voltage Vn 230 V 400 V
Rated current In 11.2 A 55.6 A
Power factor cosϕn - 0.875
Number of pole pairs p 2 2
Number of stator slots NS 24 24
PM material NeFeBo -
Outer stator diameter Do 110 mm 232 mm
Air gap sampling radius 29.29mm 85.75mm
Mechanical air gap δ 0.8 mm 0.5 mm
Active length lFe 120 mm 127 mm

III. APPLICATION TO MACHINE MODELS

A. PMSM model

A rule of thumb for predicting the frequency of the main
parasitic torque harmonic is the least common multiple
of the number of poles and the number of stator slots,
LCM(2p,NS)[5]. This harmonic is usually called cogging
torque or torque ripple. The considered PMSM has 24 slots,
p = 2 and the LCM is 24, Tab.II. Since the speed of the
machine is nn = 4500rpm, the expected parasitic torque
frequency is f = 1800Hz. The Fourier decomposition of
the toque output of the used FE software[4] meets this pre-
diction, Fig.1.

The cogging component is due to the interaction of the
magnetomotive force of the magnets ΘM and the DC and
fundamental component of the stator permeance function Λ,
illustrated in Fig. 4, where m is the defined spacial ordinal
number, g1, g2, g3 ∈ N and f1 = 150Hz is the frequency of
the fundamental air gap field component[5, 3]. The analyti-
cally derived and involved air gap field components bM,DC

and bM,S as well as the fundamental air gap field component
b1 can be assigned to the decomposition output of the convo-

bM,DC

ΘM ΛSΘM ΛDC

bM,S
1

µ0

p(1 + 2g1) = m m = p(1 + 2g2) ± g3NS

pt
cogging

f = ±f1(1 + 2g2)±f1(1 + 2g1) = f

Fig. 4. Excitation of tangential cogging forces.
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(a) I = 1.3 · In.

2|P
t
24,0| = 537 N/m

2

arg(P
t
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1

2

(b) I = 0.

Fig. 5. Space vector diagrams for P t
24,0.

TABLE III.
Air gap field components for (a) I = 1.3 · In and (b) I = 0.

(a) l k 2|Br|[Vs/m2] arg(Br)[◦] f [Hz]
1 26 -26 0.043481 0.1 1950.0 b′M,DC
2 -2 26 0.032443 53.1 -150.0 b′M,S
3 18 -18 0.081647 -179.9 1350.0 b′M,DC
4 14 -14 0.141253 0.4 1050.0 b′M,DC
5 2 -2 1.055650 8.6 150.0 b1
6 30 -30 0.048323 180.0 2250.0 b′M,DC

(a) n−l m−k 2|Ht|[A/m] arg(Ht)[◦] f [Hz]
1 -2 26 25561 143.0 -150.0 b′M,S
2 26 -26 12416 90.3 1950.0 b′M,DC
3 6 18 1938 -12.5 450.0 b′M,S
4 10 14 1099 105.0 750.0 b′M,S
5 22 2 140 67.9 1650.0 b′M,S
6 -6 30 2506 -45.7 -450.0 b′M,DC

(b) l k 2|Br|[Vs/m2] arg(Br)[◦] f [Hz]
1 26 -26 0.043507 -0.2 1950.0 bM,DC

2 -2 26 0.018125 -0.0 -150.0 bM,S

3 18 -18 0.081554 180.0 1350.0 bM,DC

4 -2 2 1.051050 0.0 -150.0 b1
5 2 -2 1.051050 -0.0 150.0 b1
6 30 -30 0.048426 179.9 2250.0 bM,DC

7 14 -14 0.141744 -0.0 1050.0 bM,DC

8 34 -34 0.023964 0.0 2550.0 bM,DC

(b) n−l m−k 2|Ht|[A/m] arg(Ht)[◦] f [Hz]
1 -2 26 14322 90.0 -150.0 bM,S

2 26 -26 12388 89.8 1950.0 bM,DC

3 6 18 991 -90.0 450.0 bM,S

4 26 -2 75 -90.6 1950.0
5 22 2 59 90.3 1650.0
6 -6 30 1293 -90.1 -450.0 bM,S

7 10 14 388 90.0 750.0 bM,DC

8 -10 34 2233 -90.0 -750.0 bM,DC

lution routine by means of their analytically known ordinal
numbers. Tab. III lists the involved air gap field convolu-
tion pairs of two other simulated operating points I = 0
and I = 1.3 ·In and Fig. 5 shows the geometric addition.
The angle between stator field and rotor position remains un-
changed.

Using a sampling procedure and a DFT, a single sinu-
soidal wave is always described by two Fourier coefficients
together that differ only in the sign of their angle and or-
dinal numbers according to (8). In Tab. III (b) the funda-
mental air gap field component b1 appears two times with
inverse values. In fact, both expressions describe the same
wave. On the contrary to this, the known analytical deriva-
tions employ one expression for one sinusoidal wave by al-
lowing only positive frequencies or positive modes[3].

Compared to the no load case (b), the parasitic force P t24,0
in (a) is increased in magnitude and the angles are distorted,
Fig. 5. This can be attributed to the increase of the tangential
magnetic strength components Ht generated by the stator
currents. Nearly no new partial force vectorsQl,k do appear.



B. IM model

The introduced PMSM model offers an easy handling by
sampling one rotor revolution or only one pole pitch revo-
lution. The air gap field of the induction machine revolves
asynchronously compared to the rotor. Thus, several rotor
revolutions have to be simulated in order to allow for a sam-
pling of a complete time period. If a transient simulation is
chosen, additional time steps are necessary to magnetize the
rotor until steady state behavior is reached. The considered
IM has been simulated for slip s = 0.008 and afterwards 62
rotor revolutions have been sampled.

The radial component of the magnetic forces is the main
cause for electromagnetically excited vibration and noise ra-
diation. However, the intensity is strongly determined by
the distribution of the natural frequencies of the mechanical
housing. Also the modes m = −6...6 with high mechan-
ical amplifications are of special interest in contrast to the
torque, that is solely generated by forces with m = 0. The
maximum air gap field components and their identification
and the maximum forces are listed in Tab. IV. The natu-
ral frequencies of the considered IM housing are unknown,
therefore the radial example force component is P r2608,3 is
singled out for analysis. The partial force components are
analogous to (12)

Ql,k =
1

2µ0
Brl,k ·Brn−l,m−k. (13)

TABLE IV. Maximum air gap field and magnetic force components
(m = −6...6), n ≥ 0.

2|Br|[V s/m2] arg(Br)[◦] n m f [Hz]
0.931856 -47.3 250 -2 100.806 fundam.
0.194274 -15.2 250 22 100.806 stat. slot.
0.176265 -102.3 2358 -19 950.806 rot. slot.
0.166318 20.7 1858 -15 749.193 rot. slot.
0.106786 -161.8 250 -26 100.806 stat. slot.
0.104127 169.9 250 46 100.806 stat. slot.
0.090524 25.4 750 -6 302.419 saturation

2|P r|[N/m2] arg(P r)[◦] n m f [Hz]
423884 0.0 0 0 0.0 -
139173 -97.5 500 -4 201.612 -
24806 -168.7 2608 3 1051.612 -
11040 39.8 3092 1 1246.774 -
10510 63.2 1000 4 403.226 -

7924 -35.0 608 -5 245.161 -
5093 136.7 2108 -5 850.000 -
4510 68.5 500 2 201.612 -

2|P
r
2608,3| = 24806 N/m

2

arg(P
r
2608) = -169

f = 1051Hz, n =2608

m = 3
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1

234
5

6

(a) This paper approach.
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(b) Paper[1].

Fig. 6. Space vector diagrams for P r
2608,3.

TABLE V. AIR GAP FIELD COMPONENTS FOR FIG. 6

.

Vec l k 2|Br|[V s/m2] arg(Br) [◦] f [Hz]
1 250 22 0.194274 -15.2 100.806
2 2358 -19 0.176265 -102.3 950.806
3 250 -2 0.931856 -47.3 100.806
4 2358 5 0.036160 -134.2 950.806
5 1858 -15 0.166318 20.7 749.194
6 750 18 0.061925 76.4 302.419

Vec n− l m− k 2|Br|[V s/m2] arg(Br) [◦] f [Hz]
1 2358 -19 0.176265 -102.3 950.806
2 250 22 0.194274 -15.2 100.806
3 2358 5 0.036160 -134.2 950.806
4 250 -2 0.931856 -47.3 100.806
5 750 18 0.061925 76.4 302.419
6 1858 -15 0.166318 20.7 749.194

IV. CONCLUSIONS

The proposed method delivers a deeper insight into the gen-
eration of parasitic magnetic forces in rotating electrical ma-
chines and may provide additional help for understanding
and calculation of higher harmonics beside the analytical ap-
proaches. The influence of special design decisions, such as
additional holes or notches, that are difficult to calculate an-
alytically, or factors, such as excentricities or certain current
shapes, can be analyzed by this way.

Since the output solution of any electromagnetic FEM
software is the magnetic vector potential and so the magnetic
flux density, an analysis of permeance functions or mmf dis-
tributions is not possible. The geometric addition of several
air gap field components, excited from different causes, can
only be indirectly detected, for instance, by two comparative
simulation analyses.

The calculated torque of FEM software is strongly depen-
dent on the mesh refinement in the air gap [5]. This should
also be valid for higher air gap field harmonics. Further in-
vestigations concerning the influence of the air gap element
size and the sample density on the calculated local magnetic
forces are to be undertaken. Also a consideration of the ne-
glected tangential air gap fields for the calculation of radial
forces is to be taken into account.

The effort and costs for an analysis of the harmonic con-
tent of an induction machine model is considerable. Ad-
ditionally, since a complete time period must be sampled,
only discrete operating points are possible. Therefore, the
proposed analysis seems especially suitable for synchronous
machine models.
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