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Abstract—Expanding Part I of our contribution, this paper
deals with the analytical calculation of the tangential forces in
brushless dc machines, where we extend previously developed
methods using conformal mapping and the Maxwell stress theory
to enable a greater applicability of such methods. While Part I
focuses on the explanation of the methodology itself, aiming to
convey the overall picture and not to obscure the message with
lengthy developments of formulae, this present Part II provides
the detailed developments of the different expressions that are
important for those to carry out further research in this area.

Index Terms—Conformal mapping, brushless DC machine,
design methodology, optimization.

NOMENCLATURE

BLDCM Brushless DC machine
EMF Electromotive force
FEM Finite element method
PM PM
a Transformation point in the conf. transf. Z → W
A Area
b Transformation point in the conf. transf. Z → W
B Magnetic flux density
ds Slot depth
f Force density
fv Volumic force density
F Force
Fa Armature force
Fc Cogging force
g′ Air gap width in the Z-plane
H Magnetic field strength
J Current density
k Coordinates in the K-plane
li Effective machine length
p Compressive stress tensor
R Radius (machine geometry)
Rs Stator inner surface radius
V Volume
s Coordinates in the S-plane
Sm Maxwell stress tensor
t Coordinates in the T -plane
w Coordinates in the W -plane
z Coordinates in the Z-plane
ε Auxiliary parameter
λks,m Coordinate transformation factor for K → S

(calculation of the PM field)
λts,a Coordinate transformation factor for T → S

(calculation of the armature winding field)
μ Permeability

μ0 Permeability of vacuum, μ0 = 4π10−7 Vs/(Am)
μfe Permeability of iron
μr Relative permeability
σ Tensile stress tensor
θ Angle (machine geometry)
Indices

1 Parameter on slot side no. 1
2 Parameter on slot side no. 2
a Parameter related to the armature winding field
l Parameter related to the tensile stress
m Parameter related to the PM field
n Component perpendicular to the material surface
q Parameter related to the compressive stress
t Component tangential to the material surface

I. INTRODUCTION

In this paper, continuing Part I of our contribution, we
continue to focus on the analytical calculation of the tangential
forces that generate the armature and the cogging torque in
brushless dc machines (BLDCMs). This is motivated by the
increasing complexity of electric drive systems which calls
for the development of efficient design techniques for electric
machines that still meet the desired degree of accuracy. While
Part I focuses on the explanation of the methodology itself,
aiming to convey the overall picture and not to obscure the
message with lengthy developments of formulae, this present
Part II provides the detailed derivations of the different newly
developed expressions that are important for those to carry
out further research in this area. Key aspects of the overall
context that are required to develop those new expressions are
reviewed in a concise manner so that not only Part I, but also
Part II can be studied as a self-contained paper, with the same
overall topic as Part I, but a different emphasis.

We have chosen BLDCMs as our application, because they
can benefit even more than other machine types from an
analytical technique that takes into account both the armature
and the pulsating torque for fast optimization of the machine
parameters and the control technique in one unified step.
However, this should not obscure the fact that the presented
technique can be expanded to be used in different machines
and for the calculation of other (i.e. radial) forces.

Our new approach extends previously presented methods
using conformal mapping to (i) avoid the singularity of the
magnetic flux density at the tooth tip during the transformation
and thereby overcome the limitations of this approach with
respect to the calculation of the cogging and armature torques
developed in electric machines, and (ii) calculate the forces
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at the slot sides so that the influence of the machine design
parameters on the result is directly available.

To this aim, we use the Maxwell stress theory to calculate
the forces at the interface of two materials with different per-
meabilities. While the Maxwell stress theory is frequently used
to calculate the force on a rigid body placed in an electromag-
netic field, very few results exist for the first method. The force
on a rigid body method has the advantage that the contour can
be freely selected. However, the vectorial components of the
magnetic flux density along the contour have to be known
and the relationship between the machine design parameters
and the developed torque is not straightforward, since it is
not obvious where the force physically occurs and therefore
which part or parameter of the machine it is mostly influenced
by. We therefore focus on the calculation of the forces on the
interface of materials with different permeabilities, because of
its suitability for analytical design and optimization techniques
and the direct availability of the correlation between the
machine geometrical parameters and the produced torque. This
theory is discussed in detail in Sec. II.

Using this technique, the magnetic flux density at the
slot sides needs to be known. Using available techniques to
calculate the flux in slotted machines based on conformal
transformations, a singularity occurs at the tooth tip, rendering
the determination of the magnetic flux at this point impossible.
Because these formulae are essential for the work presented
in the following, they will be briefly reviewed in Sec. III. The
singularity at the tooth tip significantly limits the calculation
of the torque based on flux densities determined via conformal
mapping, because of the crucial influence of the flux density
in this area on the overall developed tangential forces.

In the new approach, we avoid the need to explicitly
calculate the magnetic flux at the tooth tips by substituting
the value of the magnetic flux density in the slotted machine
by the magnetic field in the slotless machine and the corre-
sponding transformation parameters. The new expressions for
the armature and the cogging torque are developed in detail
in Sec. IV, thereby complementing Part I of our contribution.

II. DISCUSSION OF THE MAXWELL STRESS THEORY

In the context of electric machines, the Maxwell stress
theory is frequently used to calculate the developed torque(s)
through computation of the force on a rigid body placed in
an electromagnetic field. This easily obscures the fact that the
Maxwell stress theory can also be used to calculate the forces
at the interface of materials with different permeabilities. As a
matter of fact, it has only rarely been discussed in the literature
so far, with [1] and [2] being the two key references. In con-
trast to the rigid body method, this approach does not require
the computation of the vectorial components of the magnetic
flux density but only of the overall magnitude. Furthermore,
the correlation between the machine’s geometrical parameters
and the produced torque is readily available. These benefits
come at the expense that the integration path is given by
the interface at which the force occurs and can hence not be
freely selected, which clearly is an advantage of the rigid body
method. Both methods are discussed in the following, with a

special emphasis on the detailed derivation of the magnetic
force at the interface of materials with different permeabilities.

A. Force on a rigid body placed in an electromagnetic field

The mutual forces between elements of charge are calcu-
lated via the assumption that a fictitious state of stress exists
throughout the field, even in space free of matter, where
the representation of magnetostatic stress components has
no essential physical reality [3]. First, multiplying the first
Maxwell equation in its form for stationary and quasi-static
fields, ∇ × �H = �J , vectorially by �B and considering the
material properties �B = μ0μr

�H , with μr = 1 in free space,
one obtains

1
μ0

(
∇× �B

)
× �B = �J × �B . (1)

The right term of (1) describes the force per unit volume in
a volume V containing moving charges and magnetic flux
density. The total force on the given volume V is therefore

�Fm =
∫
V

�J × �B dv . (2)

In a rectangular coordinate system and assuming the mag-
netic flux density as divergence free, (1) can be written as

1
μ0

(
∇× �B

)
× �B +

1
μ0

�B∇ · �B = div Sm (3)

with the Maxwell stress tensor Sm

Sm =

⎛
⎜⎜⎜⎜⎜⎜⎝

B2
x

μ0
− B2

2μ0

BxBy

μ0

BxBz

μ0

ByBx

μ0

B2
y

μ0
− B2

2μ0

ByBz

μ0
BzBx

μ0

BzBy

μ0

B2
z

μ0
− B2

2μ0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

For the complex steps of this reformulation, we refer to the
literature (e.g. [3]). Next, one obtains∫

div SmdV = �Fm and
∫

Sm�n da = �Fm , (5)

from (2) and (3) and using Gauss’ Theorem, and the force
density at the surface bounding the volume V

�fm =
d�Fm

da
= Sm�n . (6)

In a rectangular system, the product Sm�n and hence the
force density �fm can also be written as

Sm�n = �fm =
1
μ0

(
�B · �n

)
· �B − 1

2μ0
B2 · �n . (7)

Using this approach, the boundary of the region can be
freely selected. In the context of electric machines, the contour
is frequently placed in the air gap [4] where it can be
determined without any restriction. However, the required
calculation of not only the absolute values of the magnetic
flux along this contour, but also of its vectorial components
increases the computational complexity significantly. Further-
more, the relationship between the machine design parameters
and the developed torque is not straightforward, since it is not
obvious where the force physically occurs and therefore which
part or parameter of the machine it is mostly influenced by.
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B. Force on the interface between materials with different

permeabilities

The derivation of the forces between materials with different
permeabilities is based on the assumption that a tensile stress σ
exists inside a magnetic flux tube along the line of force trying
to shorten the tube, and a compressive stress p at right angles
to the line of force, trying to widen it [2]. Both σ and p depend
on the material properties. (See also Sec. III-C of Part I of our
contribution.) First, we review the development of the general
expressions of the forces assuming these stresses are known
[2]. Then, we derive the formulae taking into account the
material assumptions of Helmholtz and Carter [1] explicitly,
thereby extending the previous work.

1) General expression: Fig. 1 shows the magnetic flux vec-
tor at the interface between materials with different permeabil-
ities. Assuming there is no surface charge at the interface, the
well-known boundary conditions H1t = H2t and B1n = B2n

hold true. Assuming the flux density �B1 having an angle α1

to the surface of area 1, the tensile and compressive forces of
the magnetic flux density vector (Fig. 2(a)), are

dF1l = σ · dA · cos α1 , (8)
dF1q = p · dA · sin α1 , (9)

from which the resulting normal and tangential force compo-
nents and the respective force densities are obtained:

dF1n = dF1l · cos α1 − dF1q · sin α1

= σ · cos2 α1 · dA− p · sin2 α1 · dA , (10)
dF1t = dF1l · sin α1 + dF1q · cos α1

= (σ + p) · cos α1 · sin α1 · dA , (11)

f1n =
dF1n

dA
= σ · cos2 α1 − p · sin2 α1 , (12)

f1t =
dF1t

dA
= (σ + p) · cos α1 · sin α1 . (13)

The flux density �B2 on side 2 also creates forces at the
interface between the materials (Fig. 2(b)), which are in
analogy to those on side 1 given as

f2n =
dF2n

dA
= − (

σ · cos2 α2 − p · sin2 α2

)
, (14)

f2t =
dF2t

dA
= (σ + p) · cos α2 · sin α2 . (15)

1�2� 1B
�

1nB

1tB
2nB

2tB

2B
�

2�
1�

s
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Fig. 1. Magnetic field vectors at the interface of two materials with different
magnetic permeabilities.
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Fig. 2. Tensile and compressive components of the force vectors in the two
areas.

The expressions for the resulting normal and tangential force
densities are obtained by superposition,

fn = f1n + f2n and ft = f1t + f2t . (16)

2) Helmholtz’ material assumptions: The tensile and com-
pressive forces σ and p, derived from Helmholtz’ material
assumptions, are [1]

σ = p =
1
2
BH , (17)

from which (13) becomes

f1n =
1
2
B1H1 cos2 α1 − 1

2
B1H1 sin2 α1

=
1

2μ1
· (B2

1n −B2
1t

)
. (18)

With the normal force density in area 2 derived accordingly

f2n = − 1
2μ2

· (B2
2n −B2

2t

)
, (19)

the total normal force component fn = f1n + f2n becomes:

fn =
1
2
·
(

1
μ1
− 1

μ2

)(
B2

1n +
μ2

μ1
B2

1t

)
. (20)

f1t =
(

1
2
B1H1 +

1
2
B1H1

)
· cos α1 · sin α1

= B1nH1t =
1
μ1

B1nB1t , (21)

f2t = − 1
μ1

B2nB2t , (22)

ft = f1t + f2t =
1
μ1

B1nB1t − 1
μ1

B1nB1t = 0 .(23)

With Helmholtz’ material assumptions, the total force has
only a normal force component. The direct implication from

the Helmholtz σ and p definitions for electric machine appli-

cations is that the torque can only be generated at the tooth

sides. The field component at the tooth head causes radial

forces and does not have a tangential force component.
In the context discussed here, only the interfaces between

iron and materials with μ� μfe are of interest. Furthermore,
without loss of generality, we simplify μ = μ0 throughout the
whole slot. With μ2 = μrμ0 and therefore μ1 = μ0, (16 a)
becomes

fn =
1
2
·
(

1
μ0
− 1

μrμ0

)(
B2

1n + μrB
2
1t

)
. (24)
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Assuming furthermore μr → ∞, it is Bt → 0, and the force
density at the interface is finally

fn =
1

2μ0
B2 . (25)

3) Carter’s material assumptions: Carter made different
material assumptions, resulting in [1]

σ =
1

2μ0
B2 and p =

μ0

2
H2 (26)

for the tensile and compressive stresses, from which the
normal and tangential force densities at the interface between
two materials with μ1 = μ0 and μ2 = μrμ0,

fn =
1
2

B2
1n −H2

1t

μ0
− 1

2

(
B2

2n

μ0
− μ0H

2
2t

)
= 0 , (27)

ft = − (μr − 1)2

2μr
·H1n ·H1t (28)

are obtained.
Using Carter’s material assumptions, only a tangential force

exists at the interface between materials with different perme-
abilites. However, as the magnetic field becomes perpendicular
to the surface for μr → ∞, the tangential force component
(28) would also diminish for this “ideal” case.

Unlike with Helmholtz’ assumptions, Carter’s material as-
sumptions and therefrom derived stresses can also cause forces
within the material. The volumic iron force density inside the
material is given by

fv = �J × �B + μ0

(
μ2

r − 1
2

)
∇

(
1
2
H2

)
, (29)

where the term �J× �B expresses a force density due to currents
within the iron, which–neglecting eddy currents–are usually
not present. The second term gives the force density which is
directed towards the regions with a higher flux density.

C. Conclusions on the material assumptions

The two different definitions of σ and p lead to significantly
different results of the developed forces which (for μ1 and μ2

as defined above) can be summarized as follows:
1) Helmholtz’ material assumptions give surface forces

normal to the surface, but no volumic forces. The surface
forces do not depend on the orientation of the flux but
only on its absolute magnitude, and are directed from
the material with the higher to the one with the lower
permeability.

2) Carter’s material assumptions give both surface and
volumic forces. The surface forces are tangential to
the surface and are zero when the magnetic field is
tangential or perpendicular to the surface. The volumic
forces inside the material tend to force each element
towards the parts with the higher magnetic flux density.

For accurate analysis of the forces acting inside a machine,
both assumptions should be examined. However, no literature
is known to the authors in which Carter’s material assumptions
are used and the machine torque is analyzed based on the field
calculated inside the iron. In the further analysis, Helmholtz’

material assumptions will be used because the resulting anal-
ysis is more concordant with the common techniques of
machine analysis and the calculation of the field inside the iron
of the machine is more complex than the one at the material
interfaces.

D. Application to electric machine design

1) Implications and approximations: For electric machines,
Helmholtz’ material assumptions imply that the torque can
only be generated at the tooth sides. The field component
at the tooth head causes radial forces and does not have a
tangential component. Furthermore, we have μ � μfe in the
slot. Without loss of generality of the methodology presented,
we approximate μ = μ1 ≈ μ0 throughout the slot and refer to
the results developed in Sec. II-B2: with the permeability of
the core μ2 = μrμ0 (24) applies, what, assuming furthermore
μr →∞ and hence Bt → 0, further simplifies to (25). As long
as these assumptions hold true (within the desired degree of
accuracy), only the absolute value of the flux distribution along

the slot sides is required for the calculation of the cogging and

armature force, which is a huge advantage over the force on
a rigid body/contour in the air gap method.

2) Cogging force: For a given rotor position, using (25),
the total force acting on one slot side and caused by the fields
generated by the permanent magnets (PMs) is

Fc =
1

2μ0
· li ·

Rs+ds∫
Rs

B2
m dR , (30)

with the effective stator length li, the inner stator radius Rs,
the slot depth ds, and the index m to indicate that the magnetic
field is generated by the PMs. If a slot is fully covered by a
magnet, the forces on the two slot sides cancel each other. If
a given slot is only partially covered by a magnet, a resultant
force normal to the slot surface and hence tangential to the
machine radius occurs. These forces cause the cogging torque,
which therefore can be computed from the sum of all the forces
Fc that are acting on the individual slot sides, and considering
the radius the force is active at.

3) Armature force: The desired tangential force that gen-
erates the armature torque is caused by the field generated by
the armature winding, which strengthens the field generated
by the PMs on the one and weakens it on the other side of the
slot the winding is placed in. Again, using (25), the resulting
force in the slot is derived in analogy to (30),

Fa =
1

2μ0
· li ·

Rs+ds∫
Rs

(∣∣∣ �Bm(R, θ2)− �Ba(R, θ2)
∣∣∣2

−
∣∣∣ �Bm(R, θ1) + �Ba(R, θ1)

∣∣∣2
)

dR , (31)

where θ1 and θ2 are the angles of the two slot sides re-
spectively. For straightforwardness, we only consider slots
fully covered by a magnet and exploit the symmetry, i.e.
| �B(R, θ1)| = | �B(R, θ2)| = | �B(R)|, both for Bm and Ba,
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and finally obtain

Fa = − 2
μ0
· li ·

Rs+ds∫
Rs

∣∣∣ �Bm(R)
∣∣∣ ∣∣∣ �Ba(R)

∣∣∣ dR . (32)

III. SUMMARY OF THE CONFORMAL TRANSFORMATIONS
USED

For our new approach to compute the cogging and armature
torque, we apply the conformal transformation used in [5] for
the calculation of the magnetic field generated by the armature
winding and the one presented in [6] (which is based on [7],
[8], and [5]) for the computation of the field generated by the
PMs, respectively. In both cases, the air gap field is calculated
for a slotless machine and then the slotting is taken into
account through multiplication with a complex permeance.

This approach includes the following simplifications: (i)
μfe → ∞, (ii) no change of the field distribution in axial
direction, (iii) rectangular, and (iv) infinitely deep slots, and
the–in line with (ii)–radially magnetized PMs are (v) assumed
to have a linear second-quadrant demagnetization characteris-
tic, (vi) are modeled by surface currents at the magnet flanks,
neglecting any volume currents inside the PMs [9].

For the magnetic field generated by the PMs, four confor-
mal transformations are required, transforming the geometry
between the planes S (slotted machine), Z, W , T and K
(slotless machine) [6]. If a slot is fully covered by a magnet,
the magnetic field in the K-plane is constant. Otherwise, if
a slot is not fully covered by a magnet, a transition area
between zero field and maximum field exists. The width of
the transition area depends on the geometrical parameters of
the machine and notably on the dimensions of the magnet.
An analytic expression for the magnetic field in the slotless
machine generated by the PMs, Bkm, has been derived in [7],
which is also used the work presented here.

For the armature field, only three conformal transformations
are required: S → Z, Z → W , and W → T [5]. Since the
line of symmetry in the middle of the slot can be exploited
only half of the slot needs to be analyzed. Note that in both
cases, an analytical transformation Z → W is not possible
and numerical methods have to be applied. For further details
on the individual steps, we refer to Part I of our contribution
as well as to the cited literature.

Using these conformal transformations, the fields generated
by the PMs and by the armature winding in the slotted
machine, Bsm and Bsa, can be obtained from those computed
for the slotless machines, Bkm and Bta, by

Bsm = Bkm ·
(

∂km

∂sm

)∗
, (33)

Bsa = Bta ·
(

∂ta
∂sa

)∗
, (34)

from which

Bsm = λ∗ks,m ·Bkm , (35)
Bsa = λ∗ts,a ·Bta , (36)

with the complex permeances

λks,m =
km

sm
· wm − 1√

wm − am

√
wm − bm

= λm , (37)

λts,a = j · 1
g′

√
wa − aa√
wa + 1

· 1
sa

= λa (38)

can be obtained. Here, ‘*’ denotes the complex conjugate,
g′ the width of the air gap in the Z-plane, k, w, and s
are the coordinates in the K-, W -, and S-plane respectively,
and am = 1/bm and aa are transformation points for the
transformation Z → W . For the derivations of the magnetic
field distributions in a slotless PM machine, Bkm and Bta, as
well as of the complex permeances λm and λa, we refer to the
literature (i.e. [5]–[8]). The full expressions of λ ks,m = ∂km

∂sm

and λ ts,a = ∂ta

∂sa
, i.e. the individual partial derivatives con-

tributing to these terms, are required to understand the detailed
derivations of the new expressions to compute the forces that
cause the cogging and armature torque in BLDCMs. They are
therefore given in the Appendix.

It is important to note that (37) does not have a solution
for wm = am = bm which correspond to the tooth tips of the
slotted, “real” machine in the S-plane.

IV. THE NEW FORCE AND TORQUE CALCULATION
METHOD

A. Introduction

In Part I of our contribution we have shown that the majority
of the field generated by the PMs strongly decreases with the
distance from the tooth tip, and that therefore the singularity
in (37) significantly limits the use of this method as such to
compute the armature and cogging torque generated in the
machine. This has been highlighted by the computation of
the cogging torque in an example machine with ds = 10 mm
deep slots. Here, the field was computed up to distance ε from
the tooth tips. The very small difference of 0.003 mm ( ε1 =
0.01 mm versus ε2 = 0.007 mm) resulted in computed torque
values differing by more than a factor of 2.5!

In the new approach, we avoid the need to explicitly
calculate the magnetic flux at the tooth tips by substituting
the values of the magnetic flux density in the slotted machine
Bsm = Bm and Bta = Ba in the expressions for Fc and
Fa by the magnetic fields in the slotless machine Bkm and
Bta and the corresponding transformation parameters λm and
λa. Thereby, the forces Fc and Fa are calculated in one step
and no singularities occur any more in the expression, as will
become clear in the following.

B. Cogging force

In order to account for the different planes considered in the
approach, the general expression for the force resulting from
the field generated by the PMs (30) is rewritten, considering
that the magnetic field generated by the PMs, Bm, is the field
in the slotted machine in the S-plane,

Fc =
1

2μ0
· li ·

Rs+ds∫
Rs

B2
m ds . (39)
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Then, the integration limits are adjusted to account for the
infinite slot depth required for the conformal mapping,

Fc =
1

2μ0
· li ·

∞∫
Rs

B2
m ds . (40)

The influence of this adjustment on the accuracy of the results
is negligible, because of the strong decrease of the magnetic
flux density with the slot depth. Next, the magnetic flux density
is replaced using (35),

Fc =
1

2μ0
· li ·

∞∫
Rs

∣∣λ∗ks,m ·Bkm (s)
∣∣2 ds . (41)

The force calculation with (41) is not directly possible
because Bkm (s) is not available. From [7] the magnetic flux
density in a slotless machine Bkm (k) is given. Therefore, the
integration parameters and limits have to be adjusted. For this
purpose we do not replace the complex permeance λ∗ks directly
by its expression (37) but by the corresponding derivation ∂km

∂sm
,

see (33),

Fc =
1

2μ0
· li ·

∞∫
Rs

|Bkm (sm)|2 ·
∣∣∣∣∂km

∂sm

∣∣∣∣
2

ds

=
1

2μ0
· li ·

∞∫
Rs

|Bkm (sm)|2

·
∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∂zm

∂sm

∣∣∣∣
2

ds . (42)

Since the two slot sides are transformed to different points
in the K-plane, they also have different new integration limits.
In the following, we develop the new expression for the force
at one slot side, Fc1, at length, the one for the second slot
side, Fc2, follows accordingly.

In the first step, we transform the integral from the S- into
the Z-plane by canceling the terms 1

∂sm
and ds and adjusting

the integration limits (logarithmic transformation).

Fc1 =
1

2μ0
· li ·

∞+jθ1∫
log Rs+jθ1

|Bkm (zm)|2

·
∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∣∣∣∣
2 ∣∣∣∣∂zm

∂sm

∣∣∣∣ dzm (43)

=
1

2μ0
· li ·

∞+jθ1∫
log Rs+jθ1

|Bkm (zm)|2

·
∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∣∣∣∣
2 ∣∣∣∣ 1

ezm

∣∣∣∣ dzm

=
1

2μ0
· li · 1

Rs
·

∞+jθ1∫
log Rs+jθ1

|Bkm (zm)|2

·
∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∣∣∣∣
2

dzm . (44)

In the next step, the integral is transformed from the Z-
into the W -plane in analogy to the previous transformation,
(canceling 1

∂zm
and dzm and adjusting the integration limits;

Schwarz-Christoffel transformation).

Fc1 =
1

2μ0
· li · 1

Rs
·

1∫
am

|Bkm (wm)|2

·
∣∣∣∣∂km

∂t

∂t

∂w

∣∣∣∣
2 ∣∣∣∣∂wm

∂zm

∣∣∣∣ dwm (45)

=
1

2μ0
· li · 1

Rs
·

1∫
am

|Bkm (wm)|2

·
∣∣∣∣km · j · g′

π
· 1
w

∣∣∣∣
2

·
∣∣∣∣−j · π

g′
· (wm − 1) · wm√

wm − am ·
√

wm − bm

∣∣∣∣ dw

=
1

2μ0
· li · 1

Rs
· g′

π
·

1∫
am

|Bkm (w)|2

·
∣∣∣∣Rs · ej·

“
g′
π ln wm+ θs

2

”∣∣∣∣
2

·
∣∣∣∣ wm − 1
wm ·

√
wm − am ·

√
wm − bm

∣∣∣∣ dw (46)

=
1

2μ0
· li ·Rs · g′

π
·

1∫
am

|Bkm (wm)|2

·
∣∣∣∣ wm − 1
wm ·

√
wm − am ·

√
wm − bm

∣∣∣∣ dw . (47)

Because of the conformal transformation the value of wm

is limited to 0 ≤ am ≤ wm ≤ 1. We can therefore eliminate
the absolute value bars and obtain the final expression for the
force acting on the first side of the slot,

Fc1 =
1

2μ0
· li ·Rs · g′m

π
·

1∫
am

|Bkm (wm)|2

· 1− wm

wm ·
√

wm − am ·
√

bm − wm

dwm . (48)

The force acting on the second side of the slot can be
derived accordingly and is

Fc2 =
1

2μ0
· li ·Rs · g′m

π
·

bm∫
1

|Bkm (wm)|2

· 1− wm

wm ·
√

wm − am ·
√

bm − wm

dwm . (49)

The total contribution of one slot towards the force gener-
ating the cogging torque is

Fc,slot = Fc1 + Fc2 . (50)

Note that only slots which are not fully covered by a PM
magnet have Fc,slot 	= 0. The total cogging force can be
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computed from (50) considering all slots of the machine which
are not fully covered by a PM.

In Part I of our contribution we have shown results con-
firming that the new approach to compute the cogging torque

based on the magnetic field in the slotless machine and using a

single expression is correct. Because of a displacement of the
angular position the maximum of the torque occurs at when
the field in the slotless machine, Bkm from [7], is obtained
analytically instead of numerically, we concluded that further
work to develop improved methods to calculate this field
analytically would be preferable. However, considering the

sensitivity of numerical results for the cogging torque towards

the simulation parameters and the related and required high

computational effort, the results of the analytical calculation

can be considered as acceptable.

C. Armature force

The new expression to calculate the armature force is
developed in analogy to the one to compute the cogging torque
discussed in the previous paragraph: first, in order to account
for the different planes considered in the approach, the general
expression for the force resulting from the field generated by
the PMs (32) is rewritten, considering that the magnetic fields
generated by the PMs and by the armature winding Bm and Ba

are those of the slotted machine in the S-plane, and adjusting
the integration boundaries to account for the infinite slot depth
required for the conformal mapping,

Fa = − 2
μ0
· li ·

∞∫
Rs

∣∣∣ �Bsm(R)
∣∣∣ ∣∣∣ �Bsa(R)

∣∣∣ dR . (51)

Next, the magnetic flux densities are replaced using (35) and
(36),

Fa = − 2
μ0
· li ·

∞∫
Rs

∣∣λ∗ks,m ·Bkm

∣∣ ∣∣λ∗ts,a ·Bta

∣∣ ds . (52)

The armature winding field in the T -plane does not depend
on the radius. Assuming that the slot is completely covered
by the magnet and that the flux in the K-plane is therefore
constant, equation (52) becomes

Fa = − 2
μ0
· li · |Bkm| |Bta| ·

∞∫
Rs

∣∣λ∗ks,m

∣∣ ∣∣λ∗ts,a

∣∣ ds . (53)

Again, as in the case of the cogging torque, we do not
replace the complex permeances λ∗ks,m and λ∗ts,a directly
by their expressions (37) and (38) but by the corresponding
derivations ∂km

∂sm
and ∂ta

∂sa
(expanded), in order to adjust the

integration parameters and limits, see (33), (34), and the
Appendix,

Fa = − 2
μ0
· li · |Bkm| |Bta| ·

∞∫
Rs

∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∂zm

∂sm

∣∣∣∣

·
∣∣∣∣ ∂ta
∂wa

∂wa

∂za

∂za

∂sa

∣∣∣∣ ds . (54)

It is obvious that the coordinates in the S-plane for the
computation of the magnetic fields generated by the PMs and

by the armature winding are the same, sa = sm = s, since
the same machine model is used for both cases. As in the
previous case, we transform the integral from the S- into the
Z-plane by canceling the terms 1

∂sm
and ds and adjusting the

integration limits (logarithmic transformation),

Fa = − 2
μ0
· li · |Bkm| |Bta| ·

∞+jθ1∫
log Rs+jθ1

∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∣∣∣∣

·
∣∣∣∣ ∂ta
∂wa

∂wa

∂za

1
eza

∣∣∣∣ dzm (55)

= − 2
μ0
· li · |Bkm| |Bta| · 1

Rs

·
∞+jθ1∫

log Rs+jθ1

∣∣∣∣∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∣∣∣∣
∣∣∣∣ ∂ta
∂wa

∂wa

∂za

∣∣∣∣ dzm . (56)

with
∣∣∣∂za

∂sa

∣∣∣ =
∣∣ 1
eza

∣∣ ≈ 1
Rs

(neglecting the slot depth when
compared to the stator radius).

By changing the integration variables from the Z- to the
W -plane coordinates and selecting the PM variable wm as
the new integration variable it is now necessary to determine
the armature winding W -plane variable wa as a function
of the PM W -plane variable wm. Because of the multiple
transformations between different planes used in the conformal
mapping, this step requires the determination of wa as a func-
tion of za. However, as explained in Part I of our contribution
(Sec. V-C), the transformation Z → W cannot be solved
analytically and has to be solved numerically. To this aim,
the solution of the transformation points Z → W is obtained
numerically and the given points are interpolated, e.g. using
the MATHEMATICA function Interpolate [10]. This numerical
determination is more complex than the one used to calculate
the flux density only. However, this new approach bypasses

the singularity problem at the tooth tip, so that the force can

be calculated without any restrictions.

In the last step, the integral is transformed from the
Z- into the W -plane. With g′m = g′a = g′, as well as∣∣∣∣ej·

“
g′
π ln w+ θs

2

”∣∣∣∣ = 1 for all g′, w, and θs, the final expression

of the armature force is obtained, (57),

Fa = − 2
μ0
· li · |Bkm| |Bta| · 1

Rs
·

1∫
am

∣∣∣∣k · j · g′

π
· 1
wm

∣∣∣∣

·
∣∣∣∣∣
1
π

1
wa (wm)

· j π

g′
wa (wm) ·√wa (wm)− aa√

wa (wm) + 1

∣∣∣∣∣
dwm

= − 2
μ0π

· li · |Bkm| |Bta| · 1
Rs

·
1∫

am

∣∣∣∣Rs · ej·
“

g′
π ln w+ θs

2

”
· 1
wm

∣∣∣∣
∣∣∣∣∣
√

wa (wm)− aa√
wa (wm) + 1

∣∣∣∣∣ dwm
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= − 2
μ0π

· li · |Bkm| |Bta|

·
1∫

am

1
wm

∣∣∣∣∣
√

wa (wm)− aa√
wa (wm) + 1

∣∣∣∣∣ dwm . (57)

Similar to the case of the cogging torque, we have shown
results confirming that this new approach to compute the

armature torque is justified in Part I of our contribution.
As a matter of fact, for the example case machine, the
difference between the analytical and the numerical solutions
was smaller than 1%, which is an excellent result. While it
is likely that such accuracy will not be obtained for other
machine configurations, the results prove that the armature

force calculation assumptions and the implementation of the

conformal mapping into the calculation of the force are correct

and that they generally can be used for the force calculation.

V. CONCLUSIONS

This paper reports on the technical details of a compre-
hensive analysis of the use of the Maxwell stress theory
applied to calculate the forces at the interface of two materials
with different permeabilities (as opposed to the forces on a
rigid body placed in an electromagnetic field) and thereby
to compute the armature and cogging torque in BLDCMs.
In contrast to Part I of our contribution, where emphasis is
laid on the methodology, this present Part II provides the
detailed developments of the different expressions that are
important for those to carry out further research in this area.
First, we develop the formulae to compute the forces on
the interface between materials with different permeabilities,
taking the material properties explicitly into account. The ex-
pressions resulting from Helmholtz’ material assumptions are
then used to develop the expressions to calculate the cogging
and armature forces that eventually cause the cogging and
armature torque of an electric machine. In these computations,
we avoid the need to explicitly calculate the magnetic flux at
the tooth tips, as it occurs when the magnetic flux on the slot
sides is directly computed using conformal mapping. Further
work should include the development of improved methods to
calculate the flux at the permanent magnet edges. Furthermore,
the developed techniques should be applied to and analyzed
for different machines with different geometries.

APPENDIX: INDIVIDUAL COMPLEX PERMEANCES OF THE
CONFORMAL TRANSFORMATIONS

A. Field generated by the PMs (based on [6])

The partial derivative ∂km

∂sm
is not directly given but can be

derived, considering the four transformations involved, S →
Z → W → T → K,

∂km

∂sm
=

∂km

∂tm

∂tm
∂wm

∂wm

∂zm

∂zm

∂sm
, (58)

with the partial derivatives defined by the differential equa-
tion of the conformal transformations between the respective
planes. These are:

∂km

∂tm
= etm = eln km = km , (59)

∂tm
∂wm

= j · g′

π

1
w

, (60)

∂wm

∂zm
= −j · π

g′
wm · (wm − 1)√

wm − am

√
wm − bm

, (61)

∂zm

∂sm
=

1
sm

=
1

ezm
. (62)

B. Field generated by the armature winding (based on [5])

As in the case of the field generated by the PMs, the partial
derivative ∂ta

∂sa
is not directly given but can be derived, consid-

ering the three transformations involved, S → Z → W → T ,

∂ta
∂s

=
∂ta
∂wa

∂wa

∂za

∂za

∂s
. (63)

with the partial derivatives defined by the differential equa-
tion of the conformal transformations between the respective
planes. These are:

∂ta
∂wa

=
1
π

1
wa

, (64)

∂wa

∂za
= j · π

g′
wa ·

√
wa − aa√

wa + 1
, (65)

∂za

∂sa
=

1
sa

=
1

eza
. (66)
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