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Abstract—In this paper, we focus on the analytical calculation
of the tangential forces that generate the armature and the
cogging torque in brushless dc machines. We extend previously
presented methods using conformal mapping to (i) avoid the
singularity of the magnetic flux density at the tooth tip during
the transformation and thereby overcome the limitations of
this approach with respect to the calculation of the cogging
and armature torques developed in electric machines, and (ii)
calculate the forces at the slot sides so that the influence of the
machine design parameters on the result is directly available.

Index Terms—Conformal mapping, brushless DC machine,
design methodology, optimization.

NOMENCLATURE

BLDCM Brushless DC machine
EMF Electromotive force
FEM Finite element method
PM PM
a Transformation point in the conf. transf. Z → W
b Transformation point in the conf. transf. Z → W
B Magnetic flux density
ds Slot depth
f Force density
fv Volumic force density
Fa Armature force
Fc Cogging force
g′ Air gap width in the Z-plane
H Magnetic field strength
J Current density
k Coordinates in the K-plane
li Effective machine length
p Compressive stress tensor
R Radius (machine geometry)
Rs Stator inner surface radius
s Coordinates in the S-plane
Sm Maxwell stress tensor
t Coordinates in the T -plane
w Coordinates in the W -plane
ε Auxiliary parameter
λks,m Coordinate transformation factor for K → S

(calculation of the PM field)
λts,a Coordinate transformation factor for T → S

(calculation of the armature winding field)
μ Permeability
μ0 Permeability of vacuum, μ0 = 4 π10−7 Vs/(Am)
μfe Permeability of iron
μr Relative permeability
σ Tensile stress tensor

σ Auxiliary parameter
θ Angle (machine geometry)
Indices

1 Parameter on slot side no. 1
2 Parameter on slot side no. 2
a Parameter related to the armature winding field
m Parameter related to the PM field
n Component perpendicular to the material surface
t Component tangential to the material surface

I. INTRODUCTION

In the light of an increasing complexity of electric drive
systems development of efficient design techniques for electric
machines that still meet the desired degree of accuracy are
of high importance. In this paper, we focus on the analytical
calculation of the tangential forces that generate the armature
and the cogging torque in brushless dc machines (BLDCMs).
We extend previously presented methods using conformal
mapping to (i) avoid the singularity of the magnetic flux
density at the tooth tip during the transformation and thereby
overcome the limitations of this approach with respect to the
calculation of the cogging and armature torques developed in
electric machines, and (ii) calculate the forces at the slot sides
so that the influence of the machine design parameters on the
result is directly available.

We have chosen BLDCMs as our application for two
reasons: (a) Because of the nonsinusoidal variation of the mag-
netic flux along the circumference, the armature torque of the
BLDCM is calculated using the “original” abc-equations [1],
[2]. (b) A wide range of motor- and controller-based design
techniques have been developed to minimize the generation of
cogging and ripple torques in BLDCM drives. These include
the use of active cancellation algorithms which depend on ei-
ther accurate tuning or adaptive control schemes [3], requiring
a detailed analysis of the instant torque generation in BLDCM.
Using an analytical technique that takes into account both the
armature and the pulsating torque, the machine parameters can
be optimized fast and together with the control technique in
one step. Thereby, time-consuming, computationally expensive
techniques such as the finite element method (FEM) only need
to be used very selectively and towards the end of the design
process.

We apply our technique to discuss the two macroscopical
tangential forces occurring in electric machines, namely (a)
the intended armature torque and (b) the parasitic cogging
torque that results from the interaction of the magnets and
the stator teeth. However, this should not obscure the fact
that the presented technique can be expanded to be used in
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different machines and for the calculation of radial forces
which can cause deformation of stator and rotor iron, vibration
and increased noise [4].

Seeking to convey the methodology itself and not to distract
the reader through extensive discussion of long formulae and
their derivations, we have split our contribution into two parts:
the present Part I discusses the methodology of the new
technique and Part II deals with the explicit derivation of
the different formulae, where both parts are self-contained
and can also be understood as stand-alone papers. In this
paper, following a brief overview of the common methods
to calculate magnetic forces in electric machines (Sec. II),
we discuss the Maxwell stress theory (Sec. III), the analytical
calculation of the magnetic forces and of the magnetic fields
in the slots (Secs. IV and V), and apply these to calculate
the armature and cogging torques in an example machine
(Sec. VI), using the newly developed approach.

II. OVERVIEW OF METHODS TO CALCULATE MAGNETIC
FORCES IN ELECTRIC MACHINES

In the context of electric machines, four methods are
commonly used to calculate the forces and torques [4]: the
(i) Maxwell stress tensor, (ii) co-energy, (iii) rate of change
of field energy, and (iv) the Lorentz force methods. The
use of the Maxwell stress tensor requires the vectors of the
flux density along a specific line or contour. The co-energy

and rate of change of field energy methods do not require
computation of the accurate distribution of the magnetic field
itself, but at the expense that the force distribution inside
the machine is not directly available. Because it is very easy
to understand and does not require any further analysis of
the physical background, the Lorentz force method is easy to
apply and is therefore used in many books. Here, aiming to
develop an analytical and fast design technique that comprises
a direct correlation between the machine design and both
the developed armature and cogging torque, we expand the
Maxwell stress theory beyond its common use (i).

III. DISCUSSION OF THE MAXWELL STRESS THEORY

A. Introduction

The Maxwell stress theory can be used to calculate (A) the
force on a rigid body placed in an electromagnetic field and
(B) forces on the interface between materials with different
permeabilities. While both approaches are suitable to calculate
the torque in electric machines ((A): e.g. [5]–[6], [7]–[10]; (B):
e.g. [11], [12].), only the force on a rigid body method, (A),
is commonly used (mostly with FEM programs), and very
few results using (B) exist. In our contribution, we focus on
method (B), because of its suitability for analytical design
and optimization techniques and the direct availability of the
correlation between the machine geometrical parameters and
the produced torque. For additional clarity, and to illustrate the
difference between the two applications of the Maxwell stress
theory, we also briefly review the expressions for use with
method (A), before we discuss those occurring in the context
of method (B). For a detailed analysis of the expressions, we
refer to Part II.

B. Force on a rigid body placed in an electromagnetic field

The mutual forces between elements of charge are calcu-
lated via the assumption that a fictitious state of stress exists
throughout the field, even in space free of matter, where
the representation of magnetostatic stress components has no
essential physical reality [13]. The force density fm at the
boundary of a given rigid body placed in an electromagnetic
field is given by

�Sm · �n = fm =
1
μ0

(
�B · �n

)
· �B − 1

2μ0
B2 · �n . (1)

Using this approach, the boundary of the region can be
freely selected. In the context of electric machines, the contour
is frequently placed in the air gap [14]. An advantage of this
approach is that the contour can be selected in a way that
singularities are avoided. However, the required calculation
of not only the absolute values of the magnetic flux along
this contour, but also of its vectorial components increases
the computational complexity significantly. Furthermore, the
relationship between the machine design parameters and the
developed torque is not straightforward, since it is not obvious
where the force physically occurs and therefore which part or
parameter of the machine it is mostly influenced by.

C. Force on the interface between materials with different

permeabilities

Maxwell was the first to give a mathematical expression
to Faraday’s concept of transmission of forces through a
field, but his equations are almost certainly erroneous [12].
Helmholtz and Carter derived the formulations for calculation
of the forces based on the energy stored in the magnetic
material. Their derivations have the same concept, but differ
in the material assumptions [12]. In both cases, the resulting
force is directed from the area with higher to the one with
lower permeability. No complete derivation of the forces
between materials with different permeabilities could be found
in available literature. In [11], the force direction is derived
generally, but no material properties are taken into account.
In [12], emphasis is placed on the material properties but the
force components and their directions are not analyzed. In
this paper, we combine these two approaches to calculate the
force components into the different directions and taking the
material properties into account.

The derivation of the forces between materials with different
permeabilities is based on the assumption that a tensile stress
σ exists inside a magnetic flux tube along the line of force
trying to shorten the tube, and a compressive stress p at right
angles to the line of force, trying to widen it [11]. Both σ and
p depend on the material properties. In this paper, we shortly
present both material assumptions and the resulting forces. For
a detailed derivation of the latter, we refer to Part II of our
contribution.

1) Helmholtz’ material assumptions: The tensile and com-
pressive forces σ and p, derived from Helmholtz’ material
assumptions, are [12]

σ = p =
1
2
BH , (2)

1436



The resulting forces acting at the interface between the
materials are then

fn =
1
2
·
(

1
μ1
− 1

μ2

) (
B2

1n +
μ2

μ1
B2

1t

)
, (3)

ft = 0 . (4)

With Helmholtz’ material assumptions, the total force has
only a normal force component. The direct implication from

the Helmholtz σ and p definitions for electric machine appli-

cations is that the torque can only be generated at the tooth

sides. The field component at the tooth head causes radial

forces and does not have a tangential force component.
In the context discussed here, only the interfaces between

iron and materials with μ � μfe are of interest. Assuming
μ2 = μrμ0, μ1 = μ0 (Without loss of generality, we simplify
μ = μ0 throughout the whole slot.), and μr →∞, (3) becomes
finally

fn =
1

2μ0
B2 . (5)

2) Carter’s material assumptions: Carter made different
material assumptions, resulting in [12]

σ =
1

2μ0
B2 and p =

μ0

2
H2 (6)

for the tensile and compressive stresses, from which the
normal and tangential force densities at the interface between
two materials with μ1 = μ0 and μ2 = μrμ0,

fn =
1
2

B2
1n −H2

1t

μ0
− 1

2

(
B2

2n

μ0
− μ0H

2
2t

)
= 0 , (7)

ft = − (μr − 1)2

2μr
·H1n ·H1t (8)

are obtained.
Using Carter’s material assumptions, only a tangential force

exists at the interface between materials with different perme-
abilites. However, as the magnetic field becomes perpendicular
to the surface for μr → ∞, the tangential force component
(8) would also diminish for this “ideal” case.

Unlike with Helmholtz’ assumptions, Carter’s material as-
sumptions and therefrom derived stresses can also cause forces
within the material. The volumic iron force density inside the
material is given by

fv = �J × �B + μ0

(
μ2

r − 1
2

)
∇

(
1
2
H2

)
, (9)

where the term �J× �B expresses a force density due to currents
within the iron, which–neglecting eddy currents–are usually
not present. The second term gives the force density which is
directed towards the regions with a higher flux density.

D. Conclusions on the material assumptions

The two different definitions of σ and p lead to significantly
different results of the developed forces which (for μ1 and μ2

as defined above) can be summarized as follows:
1) Helmholtz’ material assumptions give surface forces

normal to the surface, but no volumic forces. The surface
forces do not depend on the orientation of the flux but

only on its absolute magnitude, and are directed from
the material with the higher to the one with the lower
permeability.

2) Carter’s material assumptions give both surface and
volumic forces. The surface forces are tangential to
the surface and are zero when the magnetic field is
tangential or perpendicular to the surface. The volumic
forces inside the material tend to force each element
towards the parts with the higher magnetic flux density.

For accurate analysis of the forces acting inside a machine,
both assumptions should be examined. However, the authors
are not aware of any literature in which Carter’s material
assumptions are used and the machine torque is analyzed based
on the field calculated inside the iron. In the further anal-

ysis, Helmholtz’ material assumptions will be used because
the resulting analysis is more concordant with the common
techniques of machine analysis and the calculation of the field
inside the iron of the machine is more complex than the one
at the material interfaces.

IV. CALCULATION OF THE MAGNETIC FORCES

A. Cogging force

The cogging torque is caused by the tendency of the rotor
to align with the stator slots in such a position that the total
permeance of the magnetic circuit seen by the permanent
magnets (PMs) is maximized [15]. Considering Fig. 1(a), the
magnetic flux from the magnet to sides 1 and 4 and to sides 2
and 3 and hence the forces at the material interfaces are equal,

|�Fc1| = |�Fc4| and |�Fc2| = |�Fc3| , (10)

thus cancel each other, and no force acts upon the rotor. A
displacement of the stator with respect to the rotor causes a
change of the flux entering the four slot sides and thus of
the four forces �Fc1 to �Fc4. In Fig. 1(b)), �Fc3 and �Fc4 have
increased and �Fc1 and �Fc2 decreased. As long as the flux
density entering sides 1 and 3 is higher than the one entering
sides 2 and 4, the forces �Fc1 and �Fc3 pull the stator back to the
previous position. When the flux density entering sides 1 and
3 becomes smaller, the direction of the overall force changes.
Since the flux and therefore the forces on the two tooth sides
of a slot completely covered by a magnet are equal, cogging

torque can only be produced in those slots that are partially

covered by magnets.
Using the force density as given by (5), the total force acting

on one slot side is

Fc =
1

2μ0
· li ·

Rs+ds∫
Rs

B2
m dR . (11)

In contrast to the calculation of the cogging torque using
the force on a rigid body/contour in the air gap method, only

the absolute value of the flux distribution along the slot sides

is required here.

B. Armature force

Here, unlike in the case of the cogging torque, the difference
of the forces acting on the two slot sides is caused by the
armature winding field, since a part of the magnetic flux
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(a) Position in which the PM covers 1/2 of the left and 1/2 of the
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(b) Position in which the PM covers 1/4 of the left and 3/4 of
the right slot respectively. In this position, Fc1 becomes negligible
small.

Fig. 1. Magnet positions and generation of cogging torque.

created by the winding leaves the slot on one side and enters on
the other side again (Fig. 2(a)). Overlapping the armature and
the PM (Fig. 2(b)) fields illustrates that the latter is weakened
on side 1 and increased on side 2.
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(a) Armature winding flux.

Rotor

S
id
e
1

S
id
e
2

(b) PM flux.

Fig. 2. Magnetic flux generated by armature winding current and PMs.

Considering that �Bm|| �Ba at θ1 and θ2 (sides 1 and 2) and
whether the two fields are oriented into the same or into the
opposite direction, the resulting force in the slot is derived
using (11),

Fa =
1

2μ0
· li ·

Rs+ds∫
Rs

(∣∣∣ �Bm(R, θ2)− �Ba(R, θ2)
∣∣∣2

−
∣∣∣ �Bm(R, θ1) + �Ba(R, θ1)

∣∣∣2
)

dR . (12)

With | �B(R, θ1)| = | �B(R, θ2)| = | �B(R)|, both for Bm and
Ba, we obtain

Fa = − 2
μ0
· li ·

Rs+ds∫
Rs

∣∣∣ �Bm(R)
∣∣∣
∣∣∣ �Ba(R)

∣∣∣ dR . (13)

Again, only the absolute values of the fluxes generated by

the PMs and by the armature winding, but not their normal

and tangential components, need to be determined.

V. ANALYTICAL CALCULATION OF THE MAGNETIC FIELD
IN THE SLOTS

A. Introduction

Conventionally, in contexts where the magnetic resistance
of the air gap is calculated, the slot openings are taken into

account via the Carter factor (e.g. [16], [17]). However, this
approach precludes information on the radial and tangential
components as well as an accurate calculation of the magnetic
flux on the slot sides, as it is required for the approach
to calculate the tangential forces developed in the machine
discussed here.

In [7], [9] and [18], [19] respectively, the magnetic field,
including the one in the slot, is calculated in two steps: First,
the air gap field is calculated for a slotless machine (Fig. 3)
and then the slotting is taken into account through multi-
plication with a complex permeance. The methods presented
subsequently in [7], [9] and [18], [19] differ with respect to
the approaches taken to calculate the magnetic field and the
permeance: In [18], the field is calculated by modeling the
PM with a current distribution in the air gap and the effect
of the stator slotting is then considered in [19] by assuming
the flux density under the slot to be zero and the entire flux
over the slot pitch entering the stator under the tooth. Since this
assumption contradicts the technique used here (Bn,slotsides = 0
and hence Fa = Fc = 0), it is not discussed and/or developed
any further.

Rotor

Stator

Magnet

Fig. 3. Slotless PM machine.

In [7], the air gap flux density generated by the PMs
in a slottless machine is calculated by solving the Poisson
equation. In [9], the effect of slotting is implemented using
conformal mapping, and in [8] the approach is adapted to
calculate the armature winding field. Assuming the two fields
can be calculated independently from each other, the overall
air gap field is then obtained through superposition in [10].
Because of the different distributions of the PMs and of
the armature winding, two different conformal mappings are
required to calculate the flux generated from these two sources
respectively.

The following simplifications are made: (i) μfe → ∞,
(ii) no change of the field distribution in axial direction, (iii)
rectangular, and (iv) infinitely deep slots, where the last two
simplifications are required for the conformal mapping. It
will be shown below, that (iv) does not have any significant
influence on the force calculation (Sec. VI).

In this work, we use the conformal transformation used in
[20] for the calculation of the magnetic field generated by the
armature winding and the one presented in [5] (which is based
on [7], [9], and [20]) for the computation of the field generated
by the PMs, respectively. (Note again that [18] and [19] use a
slightly different approach.) For the derivation of the magnetic
field distributions in a slotless PM machine and of the complex
permeances λ∗m and λ∗a we refer to the literature (i.e. [5], [20])
and only summarize the key aspects and equations that we then
used in the following.
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B. Magnetic field distribution in a slotless PM machine

The PMs are (i) assumed to have a linear second-quadrant
demagnetization characteristic, (ii) are modeled by surface
currents at the magnet flanks, neglecting any volume currents
inside the PMs [18], and (iii) are radially magnetized (see
also simplification (ii) in Sec. V-A). In our context, only the
magnetic flux density in the area covered by air is of interest.
For the derivation as well as the explicit equation this magnetic
flux density, we refer to [7].

C. Conformal transformation of the PM field

Four conformal transformations are required for the determi-
nation of the magnetic field in the machine slots, transforming
the geometry between the planes S, Z, W , T and K [5]
(Fig. 4). In the first transformation, the circular machine shape
given in the S-plane is transformed into a linear model in
the Z-plane using a logarithmic conformal transformation
(S → Z). Then, the polygon boundaries of the Z-plane
are transformed into the upper half of the W -plane with the
Schwarz-Christoffel transformation (Z → W ). Note that, per
its definition, the Schwarz-Christoffel transformation realizes
only the inverse transformation W → Z. An analytic trans-
formation Z → W is not possible and numerical methods
have to be applied. Nevertheless, for simplicity, we adopt this
name here. Note also that this transformation includes the
determination of several integration parameters and constants.
Next, the polygon in the W -plane is transformed into another
polygonal form in the T -plane, again, using a Schwarz-
Christoffel transformation (W → T ). In the last step, the
original polygonal shape of the original S-plane is transformed
into a circular slotless machine shape in the K-plane (Fig. 3)
(T → K) where the distribution of the magnetic field is
known, using an exponential transformation.

Knowing the field in one plane and knowing also the
conformal transformations between the planes it can be shown
that [5], [21]

�BPlane A = �BPlane B ·
(

∂P laneB

∂ P laneA

)∗
, (14)

where ‘*’ denotes the complex conjugate. Hence, the field in
the slotted machine (S-plane) can be obtained from the one
computed for the slotless machine (K-plane) using

Bsm = Bkm ·
(

∂km

∂sm

)∗
, (15)

from which

Bsm = λ∗ks,m ·Bkm (16)

with

λks,m =
km

sm
· wm − 1√

wm − am

√
wm − bm

= λm (17)

is obtained. (Here, k, w, and s are the coordinates in the K-,
W -, and S-plane respectively, am = 1/bm are transformation
points for the transformation Z → W , and the index m
indicates that the magnetic field is generated by the PMs.
Note that z and t do not appear in (17) because they can be
expressed in terms of w.) It is important to note that (17) does
not have a solution for wm = am = bm which correspond to
the tooth tips in the S-plane.

1� 2� s�
rR

sR

(a) S-Plane.

ln sRln rR
Re

Im

1w �

0w �

w b�

w a�

w � �� w � �

1�

2�

s�

1w � �
2
s�

(b) Z-Plane.

Re

Im

0 1a

'a

b

'b ���
1�

(c) W -Plane.

Re

Im

1w �1w � �

w � �� w � �

2
s�

s�

ln sRln rR

0w �

(d) T -Plane.

Fig. 4. Conformal transformations for PM field.

D. Conformal transformation of the armature field

For the armature field, only three conformal transformations
are required: S → Z, Z → W , and W → T (Fig. 5) [20].
Because of the usually small air gaps, the computations are
restricted to only one infinitely deep slot with a current of 2I
at its ’bottom,’ and hence potentials of I and −I at the two slot
sides (with respect to the rotor at zero potential). Exploiting
the line of symmetry [20] in the middle of the slot, only half
of a slot needs to be analyzed.

Similar to above, the field in the slotted machine (S-
plane) can be obtained from the one computed for the slotless
machine (T -plane) using

Bsa = Bta ·
(

∂ta
∂sa

)∗
, (18)
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Fig. 5. Conformal transformations for armature field.

from which

Bsa = λ∗ts,a ·Bta (19)

with

λ ts,a = j · 1
g′

√
wa − aa√
wa + 1

· 1
sa

= λa (20)

is obtained. (Similar to above, w and s are the coordinates in
the W - and S-plane respectively, aa is a transformation point
for the transformation Z → W , the index a indicates that the
magnetic field is generated by the armature winding, and g′

denotes the width of the air gap in the Z-plane.)

VI. FORCE AND TORQUE CALCULATIONS

A. Introduction

The magnetic forces Fc and Fa can be calculated (a)
either in two consecutive steps, where first Bm and Ba are
determined through conformal mapping and the results are
then used to calculate Fc and Fa, (b) or in one step, where
Bm and Ba in the expressions for Fc and Fa are replaced by
their expressions including the conformal mapping factors λ∗m
and λ∗a and the fluxes in the slotless machines Bkm and Bta.
Thereby, only the forces Fc and Fa are calculated explicitly
and in one step. Because of a singularity occurring at the tooth
tip during the conformal mapping (see eqs. (17) and (20)), the
application of the first approach is very limited: Since the flux
density at the tooth tips cannot be determined, the integration
boundaries are adjusted introducing an auxiliary parameter ε
and the magnetic flux is only determined starting from at
the distance ε from the tooth tip. Furthermore, to consider
the finite depth of the slots in electric machines, a second
auxiliary parameter σ is introduced and the magnetic field
only determined by the length σ into the slot.

TABLE I
PARAMETERS OF THE FICTIVE MACHINE.

Magnet remanence flux density 1.3 T Pole pairs 2
Relative recoil permeability 1.045 Slot depth ds 10 mm
Magnet pitch ratio 2/3 Slot parameter θ1 4◦mech
Radius rotor surface 55 mm Slot parameter θ2 6◦mech
Radius magnet surface 57 mm Slot parameter θs 10◦mech
Radius inner stator surface (Rs) 57.5 mm

The outcomes of the computations are very sensitive to
the value of the parameter ε (Sec. VI-B). With the second
approach, this limitation can be overcome, and the method
proves correct (Sec. VI-C). The calculations carried out in the
following are based on a fictive machine (Table I).

B. Force and torque calculations in two consecutive steps

The flux density at the slot side generated by the PMs is
calculated using (16), using the auxiliary parameters ε and
σ. These parameters are selected empirically, and a technique
for correct determination could be a topic of further research.
While σ does not have a crucial influence on the force
calculation, ε has: approaching singularity at the tooth tip,
a small change in ε has a huge influence on the flux density
and therefore the force developed near the tooth tip. For the
analysis, σ = 4 mm and two values of ε, ε = 0.01 mm and
ε = 0.007 mm are chosen. The influence of the value of
ε on the results is analyzed at the end of this section and
ε = 0.01 mm is used in all other cases.

Two situations of the field generated by the PM have to be
distinguished: (a) The slot opening is fully and (b) partially
covered by a magnet: Fig. 6 shows the computed results for
the first case, (a): although the slot depth is 10 mm, the flux
density at the slot side is nearly zero after 3 mm and hence the

assumption of the infinite slot depth can be used without any

restrictions because the force acts only at a fractional part of

the slot side. In the second case, (b), the flux densities and
therefore the magnetic forces acting on the two slot sides are
different, causing the cogging torque. The flux density in the
slotless machine (K-plane) is no longer constant as in the first
case (a) (Fig. 7). The width of the transition area depends on
the geometrical parameters of the machine and notably on the
dimensions of the magnet.

The field on the slot sides created by the armature winding
is calculated using (19) and again the auxiliary parameters ε
and σ. As can be seen from Fig. 8, the flux density does not
decrease as strongly with the slot depth as in the previous case
of the field generated by the PMs. However, it stays almost
constant after 1.5 mm into the slot.

For the analytical torque calculation we only consider the
forces acting on the slot side up to 3 mm into the slot. We set
the radius at which the resultant force is active 1.5 mm into
the slot, thereby introducing a maximum error of 3%. We
also compare the results with those computed numerically by
means of a commercially available FEM program. The results
(Fig. 9) show that the small difference of 0.003 mm for ε
leads to a significant difference of the computed values, where
the torque increases with decreasing value of ε as expected:
because of its dependency on the auxiliary parameter ε
and the extreme sensitivity of the computed values on the
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Fig. 6. Permanent magnet magnetic flux density at the slot side, computed
0.01 mm from the tooth tip 4 mm into the slot (corresponding to the auxiliary
parameters ε = 0.01 mm and σ = 4 mm).
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Fig. 7. Magnetic flux density at the inner stator surface in the slotless
machine (K-plane) with the magnet edge in the middle of the slot (5◦) in
the slotted machine (S-plane).
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Fig. 8. Armature winding flux density at the slot side, computed as of
0.01 mm from the tooth tip (corresponding to the auxiliary parameter ε =
0.01 mm).

choice of ε, these values illustrate the limitations of this
two-step approach. Therefore, calculation of the armature
torque based on explicit computation of Bc and Ba does not
add much value and is omitted. Before continuing with the
second newly developed one-step approach, where Bc and
Ba are not calculated explicitly, we note that the magnitude
of the numerically computed torque is in-between the two
analytically computed values. Furthermore, the numerical
and analytical results are not in phase, indicating that the
calculated flux densities do not reach their maxima at the
same rotor displacements.
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Fig. 9. Cogging torque calculated analytically for σ = 4 mm and ε =
0.01 mm as well as ε = 0.007 mm and numerically (FEM).

C. Force and torque calculations without explicit calculation

of the magnetic flux density

1) Cogging torque: Substituting Bm = Bsm in (11) with
λ∗ks,m · Bkm according to (16) and adjusting the integration
parameters, a new expression for the force acting on one given
slot side is obtained,

Fc =
1

2μ0
· li ·Rs · g′

π
·
∫ {

|Bkm (wm)|2

· 1− wm

wm ·
√

wm − am ·
√

bm − wm

}
dwm , (21)

where the integration limits are a and 1 on the first, and 1 and
b on the second slot side. For the detailed derivation of (21)
and of the integration limits, we refer to Part II of this paper.

We calculate the cogging torque based on the field in
the slotless machine, Bkm(w), calculated both analytically
(Sec. V-B) and numerically (FEM) and compare the results
to the cogging torque calculated using FEM only (Fig. 10).
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Fig. 10. Cogging torque calculated analytically according to (21), using
the air gap field in the slotless machine computed analytically as well as
numerically (FEM), compared to the numerically computed cogging torque.

1441



The results confirm that the new approach to compute the

cogging torque based on the magnetic field in the slotless

machine and using a single expression is justified. However,
since the purely analytical solution is again displaced when
compared to the other two solutions, we conclude that the
analytical calculation of the magnetic flux density in the
slotless machine (Sec. V-B) leads to reasonable results for
the torque magnitude but not for the position the maximum of
the torque occurs at. Hence, further work to develop improved
methods to calculate this field analytically would be preferable.
However, considering the sensitivity of numerical results for

the cogging torque towards the simulation parameters and the

related and required high computational effort, the results of

the analytical calculation can be considered as acceptable.

2) Armature torque: Similar to above, we substitute Ba =
Bsa in (13) with λ∗ts,a ·Bta according to (19) and adjust the
integration parameters to obtain a new expression for the force
acting on one given slot side,

Fa = − 2
μ0π

· li · |Bkm| · |Bta|

·
1∫

am

1
wm

∣∣∣∣∣
√

wa (wm)− aa√
wa (wm) + 1

∣∣∣∣∣ dwm . (22)

Again, we refer to Part II for the explicit derivation of (22)
and the adjusted integration limits.

Note that (22) cannot be solved analytically because of the
numerical determination of the armature winding field W -
plane variable wa as a function of the PM field W -plane
variable wm, wa (wm). This numerical determination is more
complex than the one used to calculate the flux density only.
However, this new approach bypasses the singularity problem

at the tooth tip, so that the force can be calculated without

any restrictions.

In the fictions machine, for simplicity, every pole has only
one coil with one turn, carrying 10 A, and is completely
covered by the magnet. The rotor is placed in such a position
that the magnet edges are not located at any slot opening to
avoid cogging forces. The difference between the analytical
and the numerical solutions is smaller than 1%, which is

an excellent result. (Torque calculated using (22): 2.362 Nm,
torque calculated numerically (FEM): 2.363 Nm.) It is likely
that such accuracy will not be obtained for other machine
configurations. However, the results prove that the armature

force calculation assumptions and the implementation of the

conformal mapping into the calculation of the force are correct

and that they generally can be used for the force calculation.

VII. CONCLUSIONS

A comprehensive analysis of the use of the Maxwell stress
theory applied to calculate the forces at the interface of two
materials with different permeabilities (as opposed to the
forces on a rigid body placed in an electromagnetic field)
and thereby to compute the armature and cogging torque in
BLDCMs was carried out. To this aim, the magnetic flux
density at the slot sides is required. This was computed using
available techniques to calculate the flux in slotted machines

based on conformal transformations. Because of a singularity
occurring at the tooth tip, and the crucial influence on the flux
density in this area on the calculated torque, calculation of
the torque based on flux densities determined via this method
is very limited. To avoid the need to explicitly calculate the
magnetic flux at the tooth tips, an alternative approach was
taken, whereby the value of the flux density in the slotted
machine was replaced by the value in the slotless machine
and the corresponding transformation parameters. This method
allows to calculate the tangential forces and hence the armature
and the cogging torque without the restriction of not being
able to properly consider the contribution of the tooth tip. The
analytical calculation results of the armature force correlate
very well with those obtained numerically.
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