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Sy L Asymptotic Fourier
’ decomposition of tooth forces
in terms of convolved air gap field
804 harmonics for noise diagnosis

of electrical machines

M. van der Giet, R. Rothe and K. Hameyer
Institute of Electrical Machines, RWTH Aachen University, Aachen, Germany

Abstract

Purpose — The electromagnetic excited audible noise of electrical machines can be mostly attributed
to radial forces on stator tooth-heads. The methodology proposed in this paper uses numerical field
simulation to obtain the magnetic air gap field of electrical machines and an analytical-based
post-processing approach to reveal the relationship between air gap field harmonics and the resulting
force wave.

Design/methodology/approach — The simulated air gap field is sampled in space and time and a
two-dimensional Fourier transform is performed. The convolution of the Fourier transformed air gap
field by itself represents a multiplication in space time domain. During the convolution process, all
relevant combinations of field waves are stored and displayed using space vectors.

Findings — The effectiveness of the proposed approach is shown on an example machine. Particular
examples of individual force waves demonstrate how the approach can be used for practical
application in analysis of noise and vibration problems in electrical machines. The proposed method is
compared to the result of a Maxwell stress tensor calculation. It shows that the deviation is small
enough to justify the approach for analysis purposes.

Originality/value — The combination of analytically understood force waves and the use of
numerical simulation by means of air gap field convolution has not been proposed before.

Keywords Vibration, Electric machines, Noise control, Simulation, Finite element analysis
Paper type Research paper

1. Introduction

The reduction of audible noise in electrical machines is attracting more and more
attention. Designing low noise electrical machines requires a good understanding of
the causes of noise excitation.

Classical analytical approaches for noise analysis in electrical machines rely on the
identification of space and time harmonics in the air gap field that generate radial
magnetic force waves (Jordan, 1950; Gieras et al., 2006). The causality relation between
force waves and field harmonics can be traced back this way. The drawback of such

methods, however, is the limited accuracy of the air gap field and magnetic force wave
COMPEL: The International Jowrnal :
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frequency domain, either by modal analysis and superposition, or by immediate
harmonic analysis. In both cases, the computed electromagnetic force excitations are
transformed into the frequency domain. Besides, the Fourier transform of time waves,
spatial waves are also transformed in order to identify the spatial wave numbers of the
air gap field. Comparing the wave numbers and frequencies with those obtained from
analytical models, it is possible to identify which magnetic field harmonic
predominantly contributes to a given force wave (Kobayashi et al., 1997).

However, it is not possible by this approach to find out the exact composition of
each force wave. The approach presented in this paper overcomes this fundamental
drawback by Fourier transforming the magnetic field in time and space directly so as
to obtain a representation of the air gap field as a function of wave numbers and
frequencies.

The outline of this paper reads as follows: first the analysis of magnetic force waves
by means of the analytical model is explained. Afterwards a brief review of the
two-dimensional discrete Fourier transform (2D DFT) and the usage of space vectors is
given. The subsequent section presents numerical results for one example machine and
a summary concludes the paper.

2. Generation of magnetic force waves

The air gap field in electrical machines cause force densities on the permeable material
of the stator and rotor teeth. Featuring different frequency components, these forces are
responsible for mechanical vibrations that radiate air-borne sound.

Magnetic forces acting on a given medium are the divergence of the electromechanical
tensor of that medium. Each medium has its own electromechanical tensor, and that of
empty space, or air, is the celebrated Maxwell stress tensor (MST) (Henrotte and
Hameyer, 2007). In consequence, magnetic forces come under volume and surface density
form. In saturable non-conducting materials, the volume density is basically related with
the gradient of the magnetic reluctivity, and it is usually negligible with respect to the
surface force density. The latter, located at material discontinuities (e.g. on the stator
surface in the air gap), is the divergence in the sense of distribution of the
electromechanical tensor. It can be shown (Melcher, 1981) that it has a normal component
only, whose amplitude is:

P, = [By(le —Hy,) — (w’l - w’2> ] )

where B, is the radial magnetic flux density at the interface between the stator and the air
gap. Hy, and H,, are the radial magnetic field strength in the air and in the stator iron,
respectively. The magnetic co-energy density «/ is related to the magnetic energy density
w by:

B
w =HB)B—wB)=H®B) B - / |H(x)|dx. 2)
0

Owing to the constant magnetic permeability of air, u/1 is:

2
w’1=H-B—1H-B='§I—, @)
2 20
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where wo denotes the magnetic permeability of vacuum. If the permeability of the iron
cannot be considered constant, the magnetic energy term of the iron has to be determined
by means of numerical integration along the BH-curve, otherwise, i.e. in the linear case,
equation (1) can be simplified to:

1
i[Br(le - HZr) - Ht(Blf - BZt)]- (4)

If in addition, the permeability of the iron is sufficiently large and the magnetic field
strength in the iron can be neglected, the magnetic force density is finally approximated
by:

P, == ®)

In steady state operation, the air gap field is periodic in time and space, and it is
commonly described by a Fourier series of a one-dimensional wave by Jordan (1950):

b, t) = Bicos(ux = wt = ¥y, ®)
=0
where »; is the wave number, also called “number of pole pairs”, and w; is the
corresponding frequency of one particular wave. Applying equation (5) gives the force
density in the air gap:

1 o0
P, ) =5— cos(yx — wit — W)
210 ;
] &S, s
= TZ ZB By - cos(vpx — apt — V) cos(yx — apt — W)
Ho %= =
A (7
1 © 00 .
= g__zz 72 /. cos((y = m)x — (w0 = wp)t — ¥ = y)
M0 =
=1 1=
with:
. BB
= 2/.1,0-—’ Ty =Y + Vb, wy = =+ Wy, (8)

Force waves combine magnetic flux density waves two by two. As the wave numbers of
the force waves are strongly related with the vibrational eigenmodes of the stator, they
are also called mode numbers.

One common method to analyze magnetic force density waves is Jordan’s
combination table (Jordan, 1950), by which the air gap field b(x, £) is calculated from the



permeance function of the machine and the magnetomotive forces. As shown in Table I,
the causes of typical air gap field harmonics can be derived. The wave numbers of
harmonics excited by stator or rotor slotting, winding distribution or saturation are
well known and described by the number of stator and rotor slot N; and N, the
number of pole pairs p, the frequency of the fundamental component f,. Simplifying
assumptions and effects like saturation diminish the accuracy of quantitative
statements concerning the amplitude of higher harmonics. In addition, it happens in
practice that force density harmonics are obtained by finite element (FE) analysis that
were not identified by the analytical model.

3. Analysis of magnetic force density waves using numerical simulation
data and a convolution approach

In comparison to the analytical approach, a two-dimensional electromagnetic FEM
simulation provides an accurate representation of the magnetic flux density
distribution. The air gap field can be sampled in time and space and the Fourier
series coefficients can subsequently be approximated by means of the DFT. Since
many air gap field waves combinations have the same wave number, a magnetic force
density harmonic is usually the geometrical sum of a number of pairs of air gap field
harmonics. The common approach of applying Fourier analysis to the force densities
does not provide information about their composition. Before discussing the presented
approach, the two-dimensional DFT and the usage of space vectors is briefly reviewed.

3.1 Two-dimensional Fourier analysis
Say T>0, o=27/T and f:[0,27]x[0,7T]— C is a piecewise differentiable
function. Then f can be represented by a Fourier series:

f (x, = Z Z Cnmej(nx_,-mwt)- ()

N=—00 Jp=—00

The complex coefficients of the Fourier series are determined by:

27 T
Com = _}_/ / f(x,De —jutmat) gr .. (10
27T 0 0

The function f now be sampled at discrete locations in space:
m=kx, kEZ, Ax>0 (11)

and discrete instants in time:

Cause Wave number (1) Frequency order (w/wg)
Stator slotting gN1+p, g EN 1

Rotor slotting (IM) gNys+p, g €N 14+ @Nz/p)-(1—53)
Stator winding distribution p6g+1), g€Z 1

Current harmonic (w) pg+w), g€Z "

Saturation 3p 3
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frequencies of typical air
gap field harmonics
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h=IAt, leZ, At>0. (12)

If in addition, fis periodic in space and is sampled NN times (277 = NAx) and if it is also
periodic in time with M sample points (7" = MAt, @ = 27/ T), then the function can be
completely described by a matrix ¥ € CVM For the sake of simplicity N,M € N
be odd.

The 2D-DFT, as approximation for the Fourier series of the function is defined as
unique invertible linear mapping 2D-DFT : ¥ € VM ¥ e CVM by means of
the spectral coefficients:

1 N-1M-1

5 o— —j(nxp+maoty)
Vom = NM; ;ykle k ! ) (13)

where yg; are entries of the matrix ¥ € MM and Jum are entries of the matrix

Y e CM¥. The inverse mapping is called the two-dimensional inverse Fourier
transform (2D-IDFT) and is defined by:

N-1M-1 )
Y = Z Z Fme J(nxp+mot;) ) (1 4)

n=0 m=0

There are algorithms, such as the Fast Fourier Transform that efficiently compute
equations (13) and (14). _

The matrix Y approximates the function f, and Y its spectrum. If f is real, ie.
Yum € R Vn,m, then it can be written in the following form:

N-1M-1

f,h = Z Z Apmcos(1,x + mot + @up), (15)

n=0 m=0
where 7, = n — (N — 1)/2. This can be split into three parts:

- N-1)/2
fety =42 Y Awcostnt + o)

n=1
16)
N-1M-1)/2
+ 22 Z A cos(rpx + mot + ©uy).

n=0 m=1

Therein, agg corresponds to the DC component and zero order mode of the function £
A, are all DC components of the space harmonics. The remaining entries, e.g.
Ay Ym=1...(M —1)/2, n=0...N — 1, determine the time and space harmonic
waves of f. Therefore, only the latter term of equation (16) is relevant for vibration
analysis, as it can represent forward and backward traveling waves. Note that this
double sum ranges from 1 to only (M — 1)/2 which means, that the transformed
matrix Y only contains half as much entries as Y. However, these entries are complex
in contrast to the entries of Y, which have been assumed to be real. Practically, that
means only positive frequencies, but positive and negative wave numbers 7,, occur.



Of course, the definition could also be chosen to have positive and negative frequencies
and only positive wave number. The first convention is used in this paper.
The coefficients in equations (15) and (16) are determined by:

Apm = Cpm + CN—n) (M —m)» a7
bum = J(Cm — CN=n)(M—m)) (18)
A = \/ (anm)z + (bmn)2 and 19)
_ b
@y = arctan . (20)
Qi

3.2 Concept of space vectors

Space vectors are frequently used as a tool to describe and calculate the flux model of
vector controlled electrical machines under various operation modes. However, space
vectors offer also a more general description for arbitrary one-dimensional harmonic
waves in electrical machines. A graphic definition of space vectors defined as complex
numbers was first proposed for electrical machines by Kovacs and Stépina. It allows a
handling of harmonic waves in a convenient way (Stépina, 1989). A single harmonic
wave can be expressed by:

f(@) = Fy-cos[p(a — ap) + w(t — ty)] = Fj- Re{e/Patel)g=ibatar (97
The space vector is defined as the complex number:
F= Fp - pl(pavtwty) (22)

In this way, the air gap field and magnetic force waves can be described by rotating
vectors in the complex plane. The magnitude of the vector corresponds to the wave
amplitude, whereas the angle corresponds to the phase shift as shown in Figure 1.

Source: Stépina (1989)
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Figure 1.

General illustrations
of one-dimensional
harmonic waves:

(a) wave withp = 5;
(b) value along angle
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Figure 2.
Commutative diagram

3.3 Convolution approach

In the sampling procedure in space and time, a full period and a full revolution of
the FEM solution data are stored into matrix B. In order to consider the magnetic
force density waves, the magnetic force density matrix P is created by applying
equation (5) to each matrix entry by. Subsequently, a two-dimensional DFT of P
provides the approximated Fourier series coefficient p,.,. Path (B, P, P) in Figure 2
illustrates this approach. The matrix P contains space vectors of harmonic magnetic
force waves. _

Path (B, B, P) in Figure 2 indicates an alternative way of calculating magnetic force
density waves P. First, the 2D DFT is applied directly to the air gap field matrix B.
Then, P is obtained by matrix convolution. The two-dimensional periodic matrix
convolution:

Z=X*Y (23)

of two given matrices X, Y € CE is defined by:

K L
Z5t = D > ki Vsobily @4

k=1 [=1

It can be shown that a multiplication in time domain, e.g. B 2 corresponds to a
convolution in frequency domain, e.g. B*B (Oppenheim ef al., 1999).

Applied to the air gap field DFT matrix, a periodic matrix convolution combines all
matrix entries with each other:

1
2o

This approach seems to be complex and costly. A complete convolution (24) for all
matrix entries would indeed be very time consuming. However, a complete convolution
is not necessary since only a very small number of combination pairs do contribute
significantly to the magnetic force density wave that really cause audible noise.
Therefore, only the matrix entries of b,,,, whose amplitude exceed a chosen threshold
need to be considered in the calculation. B

The advantage of this approach in contrast to path (B, P, P), arises from the fact
that each air gap field convolution pair is known and can be stored. Thus, for each
resulting force density wave p,;,, a set of pairs:

P= -B*B. (25)

Dom {(Enlml , Engmg); (572311137 bn4m4); . (26)

is stored.

2D-DFT

|

2D-DFT

N/ W

|

N/ Wi
*



As an example result of such calculation, Table II shows the largest five contributions
to the second order, mode two, excitation force density wave. The wave numbers and
frequency orders must be added or subtracted to obtain » = —2 and w/wy =2
according to equation (8).

3.4 Space vector diagram o

Following the convolution approach (B,B,P), each magnetic force wave can be
decomposed into the geometric addition of partial space vectors as shown in
Figure 3, which represents the same data as Table II. The depicted magnetic force
density wave has mode number » = —2 and a frequency order of w/wy = 2. Each
of the partial vectors (4), (B), (C), etc. is associated with an air gap field combination
pair. The partial vectors are sorted according to their magnitude. The broken line is
the total magnetic force density vector calculated using path (B, P, P). Obviously,
the chain of partial vectors adds up to the total vector. A truncation error that
depends on the chosen convolution threshold and on the number of stored partial
vectors leads to a gap between the total vector and the vector chain.

Space vector wiwg v wiwg v

OO
—
|
—_

= Q101 O
|
w

7= =2 whwo = 2; prr = 24,556 N/m? < 115°
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Table II.
Contributing
air gap fields

Figure 3.
Space vector diagram for
r=—2and w/ay =2
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Table III.
Machine data of the
example PMSM

4. Numerical results

4.1 Example machine

To demonstrate the proposed method, a permanent magnet excited synchronous
machine (PMSM) is investigated. It is designed using in-house software for the
automated sizing of PMSM (Hafner et al, 2008). The machine data are shown in
Table III. Its cross-section together with the field distribution in rated operation can be
seen from Figure 4. Figure 5 shows the FE mesh, which is used.

The magnetic flux density is sampled in the air gap, this is done for each time step
individually. The radial field for one time instance and its spatial spectrum can be seen
from Figures 6 and 7, respectively. The spectrum of the resulting force density waves
are shown in Figure 8. The convolution of the fundamental field with it self typically
yields high amplitudes, in this case it is 162,775 N/m? The scale of Figure 8, however,
was chosen to clearly depict the most relevant higher force density harmonics of modes
7 =0, 2 and 4 and only the maximum amplitude of the positive and negative modes is
shown.

The convolution approach is applied to the air gap field sampled in time and space.
As a first example, the second temporal order, mode 4 force density harmonic, which is
supposed to be excited by the fundamental field convoluted by itself, is analyzed. All
flux density waves that are larger than 0.01 per cent of the fundamental field are
considered as convolution partners. The space vector diagram of Figure 9 shows the
three most relevant partial space vectors. Their wave numbers and orders are given in
Table IV. The fundamental field squared (A) adds by far the largest contribution,
however, at least one more flux density wave (B) shows a minor influence.

As a second example, the 12th temporal order, mode 0 force density is considered.
As shown in Figure 8 this harmonic has a significantly lower amplitude of 1,042 N/m?,
but is still among the most significant higher frequency orders. The space vector
diagram of Figure 10 shows a different geometric addition. The force wave is not
determined by only one partial vector, but it contains significant at least two equally
significant partial vectors (4) and (B). The wave numbers and frequency orders are
given in Table V. A small gap between the total force density vector and the sum of the
vectors (4) to (F) show the asymptotic nature of the proposed method. The wave
numbers and frequency orders of the considered force density waves are summarized
in Table II. Further application examples of the proposed method can be found in
(van der Giet ef al., 2008).

Machine data Value
Number of pole pairs (p) 2
Rated power (P,) 2kW
Rated speed (12,,) 4,500 rpm
Rated voltage (V) 230V
Rated current (7)) 112A
Quter stator diameter (D,) 110 mm
Inner stator diameter (D,) 60 mm
Mechanical air gap (8) 0.8 mm
Active length (/) 120 mm
Number of stator slots (IV7) 24
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Figure 4.

Stator and rotor of four
pole example PMSM with
field lines

Figure 5.
FE mesh
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Figure 6.
Radial air gap flux density

Figure 7.
Radial air gap flux
density spectrum
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0 5 10 15 20 25 30 35 40
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4.2 Comparison with full stress tensor calculation

To justify the approach and to investigate its limits, the force density in
mode-frequency domain obtained from stress tensor using equation (1), which would
be typically used for a subsequent structural dynamic simulation, is compared to the
simplified formula (5). Figure 11 shows the relative deviation between those two. For
the fundamental field square, its magnitude is used as reference value, for all other
waves, 2,000N/m? is used as reference value, which corresponds to the maximum
amplitude shown in Figure 8. The deviation of the angle between the calculation using
equations (1) and (5) is shown in Figure 12 for all waves with an amplitude larger than
600 N/m?, which is less than 0.5 per cent of the amplitude of the fundamental field
squared. It can be seen that the relative error is below 40 per cent and the angle error is
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Space vector diagram for
r=—4and o/wy =2
Re
Space vector wiwg v wiwy v

A 1 -2 1 -2
B 1 -2 3 -6 Table IV.
C 5 -10 7 —14 Contributing air gap
7= —4& whwo =2 pror = 170,258 N/m? < 20° fields

less than 30° for all shown harmonics. The deviation is still significant as to use the full
stress tensor calculation for the excitation of precise structural dynamic simulations,
however, the obtained accuracy can be considered sufficient for studying the
contributions of the individual flux density waves to a particular force wave.

5. Summary and conclusions

The method presented in this paper allows the determination of the contributions of
partial force density waves to a specific force density waves. The approach is based on
the 2D Fourier transform representation of the magnetic flux density in the air gap and
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Frequency order

its convolution with itself. It is shown that the convolution can be limited to the
computation of the most relevant matrix entries. As an example, the air gap field and
the force density waves of a PMSM are analyzed to demonstrate the effectiveness of the
proposed approach. For this example, the error between the full stress tensor
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calculation and its simplified version is analyzed. The error is not negligible, but is still
small enough to apply the proposed approach in noise and vibration diagnosis of
electrical machine.
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