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Abstract—Flow visualization is essential to provide an insight
into complex flow patterns of electromagnetic devices. In this
paper, a method for the detection and evenly-spaced seeding
of closed flux lines in 3D quasi-static electromagnetic fields is
presented. The seeding is performed by weighting the magnetic
flux on a specified cutting surface. Due to discretization of a finite
element simulation, which is also applied for the flux density
solution, the force lines are usually not closed. Therefore, an
algorithm is introduced, monitoring the force line computation,
to provide the generation of closed force lines.

I. I NTRODUCTION

An intuitive method for the visualization of vector fields are
flux lines, which provide a straightforward visual impression
of the field characteristic and the magnetic circuit. Applying
this technique to an electromagnetic field solution, one di-
rectly encounters the problem of closed flux line computation
arising from its solenoidal field characteristics. In this paper,
a method is introduced that monitors the stream computation
to detect closed curves and minimize the computational effort.
Afterwards, the flux line algorithm is combined with a seeding
strategy that places starting points in correlation with the flux
on a specified cutting surface to support quick flow pattern
recognition. The proposed method is generally applicable to
the electromagnetic field and comparable flow fields such as
eddy current distributions.

II. CLOSED FLUX L INE COMPUTATION

A. Flux Line Computation

A flux line is an oriented curveρ in a vector fieldν on a
domainΩ, which is everywhere tangential to the vector flow,
with the properties

∂ρ

∂τ
(τ) = ν (ρ (τ)) (1)

ρ (τ = 0) = a (2)

whereρ (τ) is a certain point on the flux line,ν (ρ (τ)) the
corresponding field vector anda an arbitrary start point inΩ.
Each point inΩ is strictly mapped to exact one curveρ.

According to Maxwell equations, the evoked electromag-
netic vector field has an solenoidal field characteristic, sothat
each flux lineρ has a characteristic, but unknown length L,
where

ρ (τ + n · L) = ρ (τ) , ∀n ∈ N . (3)

For a given start pointρ (τ = 0), the flux lineρ is obtained by
integrating (2) iteratively over a discrete length∆τ (integration

step length), yielding

ρ (τ + ∆τ) = ρ (τ) +

∫ τ+∆τ

τ

ν (ρ (τ)) ∂τ (4)

For a rapid and accurate flux line computation, (4) is solved
by using a fourth-order Runge-Kutta integrator with adaptive
step size and error control [1].

B. Closed Loop Detection

In general, the numeric solution of (4) leads to a continuous
summation of the integration error, so that a computed curve
does not comply to (3), a typical example is given in fig. 1.
To detect such closed flux lines, without any knowledge of
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(a) Spiral progress of flux line in x-y
plane.
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(b) Displacement fluctuation,≤ 1%,
in z-direction.

Fig. 1. Typically integration error of eq. (4) in 3D Space. Top and lateral
view of a flux line around a current excited rectangular wire in z direction.

the location and shape within the magnetic field, stop criteria
are necessary that evaluate the integration process step-by-step
and detect the characteristic lengthL. Basically, an end point
ρ (τi) is located in a sphere aroundρ (τ0) with an error radius
ǫ, e.g.

‖ρ (τi) − ρ (τ0)‖ ≤ ǫ . (5)

Since the mesh size ofΩ typically varies, e.g. in the compar-
ison of an air gap to a back yoke, a more accurate end point
detection is required.

Therefore the basic idea of the algorithm is to monitor the
integration process and evaluate a modification of (5) by only
verifying a possible closing of the curve in 3D space. Counting
the number of sign reversal in:

δ (τi+1) = ‖ρ (τi+1) − ρ (τi)‖ · ‖ρ (τ1) − ρ (τ0)‖ (6)

A closed curve, independent from the simulated geometry,
requires at least2k + 1, k ∈ N0 sign alternations. For point
candidates that meet the latter precondition, the point distance
perpendicular to the stream direction, given by

‖(ρ (τi) − ρ (τ0)) × (ρ (τ1) − ρ (τ0))‖ ≤ ǫ (7)



is computed and compared toǫ. The error control by (7) is,
in contrast to (5), independent from the displacement in curve
direction, caused by the variable step size∆τ .

III. SEEDING STRATEGY

Magnetic flux lines provide a visual impression of the vec-
torial field direction, and if colorized an additional information
of the intensity of magnetic field density. To support a quick
recognition of the flow pattern by a set of flux lines, their
seeding points have to be correlated with the magnitude of the
vector field. By this requirement, the better part of seed points
is located in an area with high field values and vice versa.
Therefore, in this paper a seed point computation on a user
defined cutting surface,C ⊆ Ω, is presented. The proposed
algorithm is as follows:

• Initially, the flux on all cutting elements inC is evaluated
by

Φ = ~BC · ~aC (8)

where ~BC is the vectorial flux per element and~aC the
corresponding oriented surface vector.

• According to a used specified flux range[Φmin,Φmax],
the planeC is sub-divided into a given numberNplane

of sub-planes

C =
{

C1, C2, · · · , CNplane

}

(9)

so that each sub-domain contains all elements with the
corresponding flux interval.

• To weight the flux in each sub-domainCi, the average
flux Φaverage

i over all elementsNCi
on Ci, given by

Φaverage
i =

NCi
∑

i

Φelem
i (10)

is computed, [2], [3].
• For a given number of starting pointNtot, the ratio of

Ni =
Φaverage

i
∑Nplane

i Φaverage
i

Ntot (11)

defines the number of seeding point per sub-domainNi.

In the final step of the seeding algorithm, the pointsNi are
placed in the sub-domainsCi. At present state, the starting
points are moved to those elements withinCi which have
the largest magnitude of the magnetic flux. This leads, as
exemplified in fig. 3, to a rough evenly-spaced seeding. An
alternative placing strategy is to placeNi on the inner bound-
ary of Ci equidistantly. The latter method is in preparation
and will be discussed and compared to the flux-value-based
seeding strategy in the full paper.

IV. A PPLICATION

A rectangular wire surrounded by air is used as a test model
for the seeding strategy in combination with the presented
closed flux line algorithm presented in section II-B and III.
The source current densityJs is injected into the cross section
area of the wire. Fig 2, visualized by [4], shows the applied
test scenario together with its vectorial representation of the

Fig. 2. Current excited rectangular wire in z direction together with its flux
density distribution.

flux density distribution, obtained by [5]. Fig. 3 shows the seed
point distribution of 100 start point, by a chosen flux interval
from 50 to 100 and a decomposition into 10 subdomains.
It can be noticed, that the starting point population density

Fig. 3. Closed flux lines seeded around the current excited rectangular wire.

increases by a distance reduction from the wire. The latter
provides a visual impression of the flux density distribution.
The flux lines are rough evenly-space which helps to recognize
the corresponding flow pattern.

V. CONCLUSION

In this paper, an algorithm which detects closed flux lines
by extending the integration process by a monitoring routine is
presented. The method relies on the assumption of a solenoidal
vector field characteristic. To give a visual impression of the
vector field solution, a seeding strategy is presented which
places seeding points in correlation with the magnetic flux on
a cutting surface. As a first test case, the proposed method is
exemplified on a 3D air surrounded wire model yielding a flux
line distribution which corresponds to the expected flow field
pattern.
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