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Abstract— The calculation of motion-induced eddy currents
in massive conductors yields a 3D convection-diffusion problem.
Up-winding and SUPG formulations are well-established methods
to obtain stable discretizations of the scalar convection-diffusion
equations in the case of singular perturbation, but there is very
little reported experience with the stability of convection in the
vector case, i.e. in electromagnetism. Numerical experiments with
the up-winding method proposed by Xu et al. [1] has proven
its efficiency to be limited, and an alternative approach based
on a consistent discretization within the finite element Galerkin
context of the material derivative implied by the convection
phenomenon is proposed.

I. INTRODUCTION

The problem of electromagnetic braking can solved by a
quasi-stationary approach by discretizing the model in the rest
frame. According to e.g. [1], the governing equations are b =
∇ × a, e = −∂ta − ∇V and ∇ × h = j with the material
constitutive relations b = µh and

j = σ(e + v × b), (1)

where the velocity field v is different from zero in the moving
domain. There are several interpretations found in literature for
formulae like (1). The interpretations of Xu [1], Bossavit [5],
Thorne [6] and Van Bladel [7] will be discussed and compared
in the full paper.

On the other hand, it would seem natural, by analogy with
mechanics to work with Eulerian coordinates, i.e. to replace
the equation

σ∂ta + curl νcurl a = js (2)

Fig. 1. Geometry of the 3D braking system.

valid when there is no motion, with the equation

σDta + curl νcurl a = js (3)

where Dt denotes the convective derivative. This would be a
justification for importing stabilization SUPG scheme from
Mechanics, in particular computational fluid dynamics [2],
[3], into electromagnetic problems. We therefore have first to
answer the question : Is electromagnetic braking a convection
problem ?

Given a placement map pt : M 7→ N , one can define
the co-moving time derivative as the derivative operator that
fulfills

∂t

∫
Ω

α =
∫

Ω

Lv α.

The co-moving time derivative of differential forms of various
degrees write as follows

Lv f = ∂tf + v · (grad f) (4)
Lv a = ∂ta + grad (a · v)− v × curl a (5)
Lv b = ∂tb + curl (b× v) + v div b (6)
Lv ρ = ∂tρ+ div (ρv) (7)

in terms of classical vector and tensor analysis operators.
The co-moving derivative of 0-forms (5) and 3-forms (7) are
commomnly used in computational fluid dynamics where they
are called (amongst many other names) convective derivative,
Lv ≡ Dt.

The electric field writes in the absence of motion e =
−∂ta− gradu becomes in an Eulerian representation,

e = −Lv a− gradu
= −(∂ta + grad (a · v)− v × curl a)− gradu

in the presence of motion. One observes the introduction
through the co-moving time derivative of the classical v × b
(1). But one observes also a motion induced correction to the
electric scalar potential, grad (a · v), which is not considered
in the classical definition of motion induced eddy currents.
The electric field can actually be rewritten

e′ = −∂ta′ − gradu′

with the auxiliary fields : e′ = e − v × curl a, a′ = a and
u′ = u+a ·v. The co-moving time derivative appears thus to
be related with the Lorentz invariance of Maxwell’s equations,
as can be shown in a slightly extended theoretical context.



Fig. 2. Current density computed in the mover.

Fig. 3. Arbitrary finite element Ω and its upwind element Ω−.

II. XU’S SUPG APPROACH

Assuming a stationary process, ∂ta = 0, the scheme pro-
posed by Xu et al in [1], directly inspired from computational
fluid dynamics, is as follows :∫

Ω

µ−1curl a · curl w dΩ +
∫

∂Ω

(w×µ−1curl a) ·n d∂Ω =

−
∫

Ω

σ (−v × curl a + gradu) ·w dΩ

In analogy with the upwind scalar shape functions (with a free
parameter τ ) :

w = w0 + τ
v · gradw0

||v||2
, τ =

vh
2

(coth
Pe

2
− 2
Pe

)

upwind vector shape functions are defined as

w = w1 − τσv × curl w1

Numerical 3D simulations done with this approach, Fig. 2,
show that a stabilization effect is indeed observed, but leaves
still a severe limitation on the convection speed v.

III. A GEOMETRICAL SCHEME

In their report [4], Heumann and Hiptmair have successfully
exploited differential geometry concepts to obtain a geomet-
rical discretization of the convection operator in 2D. Their
approach is based on the extrusion operator introduced by

Bossavit [5]. The purpose of this paper is to generalize their
2D scheme to 3D finite element computations.

Consider the situation depicted in Fig. 3. Let Ω be an
arbitrary finite element in a 3D mesh. A particular edge of that
element ei is considered, at both ends of which the velocity
vector has been represented. This edge ei represented in the
figure is such that its upwind extrusion lays outside Ω, i.e. in
a neighbour element Ω− 6= Ω. For the FE discretisation, one
has to evaluate :∫

Ω

σLv a · ωe
l dΩ =

∑
i

{∫
ei

Lv a(Ω−i )
}∫

Ω

σωe
i · ωe

l dΩ,

(8)
where ωe

l is and edge-based trial function. But the tangential
component of Lv a is not continuous. The fact that the
derivative Lv is a limiting process involving the upwind
extrusion of ei, which lays in the upwind element Ω− relative
to the edge ei under consideration, imposes thus to evaluate
the circulation of Lv a in that element, i.e.

∫
ei
Lv a(Ω−i ).

In the evaluation of the residual (8) of the finite element Ω,
the adjacent upwind elements Ω−i plays thus a role. This is
incompatible with the classical element by element assembly
of FE elementary matrices, hence an implementation difficulty.

An algorithm to evaluate
∫

ei
Lv a(Ω−i ) will be described in

the full paper. This expression has 3 terms (5). In particular,
it will be shown that∫

ei

v × curl a =
∑
jl

Aj
V l

1 + V l
2

2
Tilj

with
Tilj = iei iel

curlωe
j (x)

a constant matrix with ±1 and 0 elements that only depends
on the topology of the tetrahedron.

IV. CONCLUSION

We have discussed the validity of introducing convection
based concepts in context of electromagnetism, and shown that
this is done by the co-moving time derivative. The concept of
extrusion yields a geometrical upwind scheme without free
parameter that can however not be assembled element by
element. More numerical results will be given in the full paper.

REFERENCES

[1] E.X. Xu, J. Simkin and S.C. Taylor, “Streamline Upwinding in 3D Edge-
Element mothod modelling eddy currents in moving conductors”, IEEE
Trans. on Magnetics, 42(4), 667-670, 2006.

[2] A.N. Brooks and T.J.R. Hughes, “Streamline-upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis
on the incompressible Navier-Stokes equations”, Comput. Meth. Appl.
Mech. Engrg., 32, pp. 199-259, 1982.

[3] P. Bochev, “A discourse on variational and geometric aspect of stability
of discretization”, In 33rd Computational Fluid Dynamics Lecture Series,
VKI LS 2003-05, edited by H. Deconinck, ISSN0377-8312, 2003.

[4] H. Heumann and R. Hiptmair, “Discretization of generalized convection
diffusion equations”, in Proceedings of the Seminar for Applied Mathe-
matics, ETH Zürich, 2008.

[5] A. Bossavit,“Extrusion, contraction: their discretization via Whitney
forms”, COMPEL, 22, pp. 470-480, 2003.

[6] K. Thorne, “Chapter 18, Magnetohydrodynamics”,
www.pma.caltech.edu/Courses/ph136/yr2004/0418.1.K.pdf.

[7] J. Van Bladel, Relativity and Engineering, Springer Verlag, 1984.


