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Abstract— This paper proposes the application of the Galerkin
projection method to implement the relative motion of stator
and rotor in the FE simulations of electrical machines. The non–
conforming representation of stator and rotor regions impose
no restriction on time or space discretization. The symmetry
and sparsity of the system of FE equations are preserved. The
method is applied to the 2D simulation of the cogging torque
of a synchronous machine and the results are compared with
a conforming moving band approach with remeshing of the air
gap at each time step.

I. INTRODUCTION

SEVERAL approaches to simulate the movement within
a Finite Element analysis (FEA) of electrical machines

have been developed. Static and transient analysis of the
machines require a flexible variation of the rotor position. An
obvious and early adopted approach is the moving band (MB)
technique [4] whose principle is to re-generate at each time
step a single layer of conforming finite elements in a thin
annulus–shaped region of the air gap. However, in practical
the automatic remeshing of the air gap is only tractable for
2D rotating machines. For linear motion in 2D and motion
in 3D models, air gap remeshing would imply invoking a
full–fledged automatic mesh generator at each time step,
which is impractical. The mortar element method (MEM) was
proposed in [8] and applied to a 2D machine problem in [1].
The Lagrange multiplier (LM) method has been extensively
investigated in [2]. Both MEM and LM can be extended to
3D problems, but the MEM requires an additional integration
mesh [9], and for the LM the conditioning worsens signifi-
cantly [6].

The non–conforming approach proposed in this paper is
based on a mesh–to–mesh Galerkin projection method (GPM)
which has been introduced in [5]. While applications described
in [7] project a known field from a source to a target mesh, in
this paper the GPM is implemented in a standard FE assembly
process.

II. PROJECTION METHOD AND FORMULATION

Let L2(Ω) be the space of square integrable functions on
Ω ⊂ Rn, n = 1, 2, 3. The scalar product relative to the L2–
norm of F and G is defined as

(F,G)Ω =
∫

Ω

F (x) ·G(x) dx. (1)

A field FΩ ∈ L2(Ω) can be interpolated in a discrete domain
as:

FΩ =
n∑

i=1

fiα
Ω
i (2)

where αΩ
i is the shape function associated to the node or edge i

and fi is the corresponding coefficient.
The sliding boundaries of the rotor (master) and the stator

(slave) domain are denoted ΓN and ΓM respectively. Note that
the choice of the master boundary is based on the discretiza-
tion: The boundary with the largest number of unknowns is
chosen as the master boundary. Let p : ΓN 7→ ΓM be a
bijective mapping. Consider the two magnetic vector potential
fields FN ∈ L2(ΓN ) and GN ∈ L2(ΓM ). One wishes to have
γ
(
FN ◦ p−1

)
= GM on ΓM and FN = γ

(
GM ◦ p

)
on ΓN

with γ = ±1 according to whether the identification between
ΓN and ΓM is a symmetry (or an identity) or an antisymmetry.
This writes in weak form:∫

ΓM

(
γ
(
FN ◦ p−1

)
−GM

)
αM

k dΓM = 0, ∀k = 1 . . .m

(3)∫
ΓN

(
FN − γ

(
GM ◦ p

))
αN

k dΓN = 0. ∀k = 1 . . . n

(4)

It can be shown that (3) and (4) loose their symmetry on the
discrete level. Thus, the idea is to use only the projection p
and avoid its inverse p−1 by applying p to (3) which leads to
the following formulation:∫

ΓN

(
γFN −

(
GM ◦ p

)) (
αM

k ◦ p
)

dΓN = 0, (5)∫
ΓN

(
FN − γ

(
GM ◦ p

))
αN

k dΓN = 0. (6)

If, after discretization, FN and GM are expressed by (2), (5)
and (6) can be written in matrix form[

A −γB
−γC D

] [
g
f

]
= 0 (7)

with the components of A and D being:

Amj =
∫

ΓN

(
αM

m ◦ p
) (
αM

j ◦ p
)

dΓN , (8)

Dni =
∫

ΓN

αN
n α

N
i dΓN . (9)
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And the components of B and C expand to:

Bmi =
∫

ΓN

αN
m

(
αM

i ◦ p
)

dΓN , (10)

Cnj =
∫

ΓN

(
αM

n ◦ p
)
αN

j dΓN . (11)

Obviously Bmi = Cjn and the resulting system (7) is
symmetric. The GPM can be incorporated into the equation
system of any standard Galerkin FE formulation. Furthermore,
no restriction regarding the degree or the type of the degrees
of freedom are imposed.

III. APPLICATION: COGGING TORQUE

The GPM has been implemented in the iMOOSE–package
[10]. The cogging torque of a permanent magnet synchronous
machine with surface mounted magnets has been studied. The
torque is calculated according to Arkkio’s method [3]. The
numeric field solution is obtained by means of a standard
magnetic vector potential FE formulation combined with either
the GPM or the MB technique. Despite its non–conformity, the
mesh density for GPM, as shown in Fig. 1, is identical to the
one for MB. The mapping p = f(ϕ) is the rotation about
the center of the rotor by the angle ϕ. The simulated cogging
torques, normalized to the nominal torque T0, are compared in
Fig 2. Additionally, the relative difference between the GPM
and the MB is shown. The GPM has as well been applied to
meshes with slightly differing numbers of unknowns n in ΓN

and m in ΓM (0.75 < n/m < 1.25). The results are similar
to the ones shown in Fig. 2.

IV. DISCUSSION

Numerical results show a good agreement between the non–
conforming GPM and the conforming MB. In general it can
be stated, that the torque calculated by the GPM follows a
smoother waveform compared to the one of the MB. The
higher harmonics in the MB waveform are suspected to stem
from the remeshing process. The differences between the GPM
and the MB do not follow a certain pattern. Larger differences
occur around the maximum as well as around the zero crossing
of the torque waveform.

Fig. 1. Nonconforming elements at ΓN and ΓM of rotor and stator
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Fig. 2. Cogging torque vs. rotation angle by means of GPM and MB

V. CONCLUSION

This abstract presents a non–conforming method to model
the sliding interfaces in electrical machines for FEA. The
method is applied to the simulation of the cogging torque
of a permanent magnet machine and the results are com-
pared to a classical MB technique. The first results and
the straightforward implementation of the GPM compared
to MEM or LM approaches for 3D problems promise a
flexible and versatile approach to deal with sliding conditions
in electrical machines. The application to 3D problems as
well as further investigations regarding energy conservation,
error estimations, numerical integration and a comparison to
measurements will be presented in the full paper.
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