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1. Introduction

Optimization of vertical passenger transportation
systems is gaining importance, since more and more
high-rise buildings occur in China or Arabia, for example.
These buildings make high demands on their passenger
transportation systems, since the height, and with it the
number of floors, obtains new maxima every year.
Examples are the Taipei Financial Center in Taiwan, the
Petronas Towers in Malaysia, and the Burj Dubai in the
United Arab Emirates, which is still under construction. In
this sense, conventional elevators with mechanical
guiding systems come to their application limitations due
to the very high requirements of these buildings. An
improvement of the operational behaviour of such high
elevator systems can be achieved by using
electromagnetic guides instead of slide or roller guides.

One benefit of electromagnetic guideways is the
wear-free operation. In addition, these guideways have no
consumption of lubricants, a further advantage compared
to mechanical guideways.

Due to the frictionless operation, the elevator can be
operated at a higher speed when compared to
conventional systems. However, the main advantage is
the possibility to control the ride comfort by adjusting the
damping rate of the guiding system. The ride comfort
depends on vibration and noise caused by misalignment
and misconnection of the guide rail. This topic and the
opportunity to improve the convenience are presented in
literature, for example in [1]. The active control of the
damping rate requires a closed loop system.

The presented work describes and explains the design
of an elevator test bench equipped with electromagnetic
guidings for the elevator car. Furthermore, the operational
performance is measured and evaluated.

2. Layout of the Elevator Test Bench

The elevator test bench presented consists of an
elevator shaft, an elevator car, and a rope with
counterbalance as propulsion device. Sensor electronics
and power converters of the guiding system are placed
within the elevator car (Fig 1).

2.1. The Electromagnets
The guiding system consists of four electromagnets in
the so called @ (“omega”)-shape. Fig. 2 depicts one of
these magnets. It consists of a three-legged laminated iron
yoke, mounted with permanent magnets on the outer pole
surfaces, and coils around the lateral legs. The operation

s

Figure 1: Electroagnetically guided elevator test bench.

of this electromagnet is based on the superposition of a
permanent magnet flux with electrically excited fluxes
[11,[2]. The analytical calculation of the electromagnet’s
fluxes is based on the method of the magnetic equivalent
circuit. Herewith, the design of the magnet is performed.
A numerical analysis of the electromagnet’s fluxes
(applying the Institute of Electrical Machines in-house
FE-software package iMOOSE) verifies the analytical
design method employed. In contrast to U-shaped
actuators, the actuator is able to produce pulling forces in
three directions. Table 1 shows the parameter of the
@ -actuator.
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Figure 2: Electromagnet in @ -shape.

Table 1: Parameter of the @ -actuator.

class parameter symbol value
iron voke pole lenght a lps A0mm
pole width b 309mim
pole face = A, =bp,-lpe 195 10°mm?
pole lenght y bpy, S0mm
pole width i by 42mm
pole face y Ay =bpy-lpy,  2.10-10°mm?
permanent magnet  height hpar 3mm
TeIAnence B, 1.22T
coercivity H. 915kA /i
excitation winding  windings w 250
resistance i 0.6 €2
inductance at L 20mH

working point

2.2. The DC/DC —Converters

Each coil of the electromagnets is driven by one
DC/DC-Converter. The applied DC/DC-converters are
well analysed for the use as electromagnet driver due to
their implementation to other magnetically levitated
vehicles before [3]. Fig. 3 presents two
DC/DC-converters on a plug-in unit of the elevator test
bench.

2.3. The Elevator Car
The elevator car is composed of an aluminium chassis,
where the electronic devices are modularly integrated.
Fig. 4 shows the front side of the elevator car inserted in
the elevator shaft. The forefront of the plug-in units
containing the DC/DC-converters and the peripheral
electronics can be seen in this figure.

Figure 3: DC-converter plug-in unit.
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Figure 4: Elevator car of the test bench.

The stiffness of the chassis is quite high (the
compliance is nearly zero); a deformation due to the
electromagnetic forces of the actuating electromagnets is
not expected. Hence, the measuring of five local positions
is sufficient for a complete position estimation of the five
degrees of freedom.

The electromagnets are mounted on two opposite edges
of roof and floor of the elevator car in a so called
symmetrical topology (similar to diagonal topology in
[2]). Benefit of this topology is the low power
consumption of the electromagnets since the uncontrolled
suspension of the elevator car is in an unstable
equilibrium when it is running without load.

2.4. Position Sensors
Five position sensors are required to completely detect
the position of the elevator car in the shaft. Therefore, five
eddy current sensors are mounted to the linear guiding
system to measure the distance between the
electromagnets and their return yokes.

2.5. The Control Section
The controller is established on an external digital
signal processor unit. The subsequently adjustment of
control parameters as well as the acquisition of sensor and
control signals is possible by a computer based user
interface.

2.6. Block scheme of the test bench
The complete block-scheme representation of the
test-bench can be seen in Fig. 5. The signal-flow from the
position vector q to the vector of magnetic forces f, is
presented. Airgap heights are measured with eddy current
sensors. The analog signal is then filtered by an
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Figure 5: Block scheme representation of the full
system.

antialiasing algorithm. After A/D transformation the
designed control algorithm is used. The signal is
transformed back by a D/A transformation. A galvanic
separation between control and power part of the test
bench is ensured by using an optocoupler. The reference
voltage is the input signal for the current controllers of the
DC/DC-converters. The output currents drive the coils of
the actuators. Finally electromagnetic forces act on the
elevator car. The feedback of the position vector q
symbolizes the dependency of the electromagnetic force
from the air gap height.

3. DOF-Control

The control method employed is the so called DOF
(degree of freedom)-control [3],[4]. A benefit of this
method compared to a simple air gap control (i.e. every
single air gap height is controlled separately) is higher
system stability, against the background of large
manufacturing tolerances in high elevator shafts. The
position vector is

q=(x y a B y)- )

Each component of the q is separately controlled by a PID
controller. For the design of this controller the method of
pole placement [5] is applied to the state space system of
the respective DOF.

4. Operation

The operation of the -electromagnetically guided
elevator car is verified by several test runs. Different load
cases such as force impacts on the elevator car’s wall and
force steps due to unbalanced goods are analyzed.

4.1. Spatial displacement

Fig. 6 depicts a force impulse of 100N in x-direction on
the elevator car. The spectrum of the impulse can be seen
in Fig. 7. The resulting spatial displacement is shown in
Fig. 8. After a short oscillation with a maximum of
0.09mm the elevator car returns to its working point qo.
The compliance characteristic of DOF x is presented in
Fig. 9. The maximum compliance occurs at an angular
frequency of 60Hz. The reciprocal value of the maximum

compliance is the minimum stiffness. This is a common
quantity for the comparison of magnetically levitated
vehicles. In Table 2 the minimum stiffness for all

components of the spatial position vector q is specified.
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Figure 6: Force impulse in x direction.
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Figure 7: Spectrum of the force impulse.
0.1 T T T T

0.051

went () [mm]

Z -0.08

0% 02 0.4 06 08 1
time ¢ [s]

Figure 8: Position error of the controlled system in
x-direction.
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Figure 9: Compliance of the controlled system in
x-direction.
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Table 2: Simulated and measured values for stiffness of
all five DOF.

DOF  minimum stiffness

x 63.5
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P N

Y 23.0 [LTT2

- kN m
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2 0 rad

steel plate

Figure 10: Surfaced defect on guide rail simulated by a
steel plate.

4.2. Airgap variation

Surface defects on the guide rails resulting from
oscillations in very high buildings, lead to variations in
the airgap length. Herewith, a variation of the airgap
reluctance follows. Nonetheless, a sufficient operation of
the elevator system must be ensured. A thin steel plate is
attached consecutively to one guide rail, resulting in
reduced airgaps in y-direction (Fig. 10). Fig. 11 and 12
show the DOF y and a during a transit through these areas.
Small deviations from working point can be seen but the
control system keeps the elevator car in the equilibrium.
The functionality of the control system is proven.

5. Conclusion

The elevator test bench constructed is well running and
still part of several measurements and optimization
developments. However, the test runs accomplished show
a good performance with respect to robustness and power
consumption. As expected, the average current value in
the electromagnets’ coils is zero. A detailed description of
the elevator setup is presented in this paper. Measurement
results form a force impact and the transit through areas
with reduced airgaps are given. The results verify the
design process and proof the functionality of the
electromagnetic guiding system .

displacement y(t) [mm]

time ¢ [4]

Figure 11: DOF y during transit through areas with
reduced airgaps in y-direction.

x10°
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time ¢ 5]

Figure 12: DOF a during transit through areas with
reduced airgaps in y-direction.
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