

Hybrid vehicles -Concepts and Future Developments

Kay HAMEYER, Thomas FINKEN Institute of Electrical Machines, RWTH Aachen University

Sigrid JACOBS, Marc DE WULF, Patrick GOES

ArcelorMittal

- overview: hybrid systems
 - functionality, configuration, advantages and disadvantages
- overview: typically used electrical machines
 - advantages and disadvantages, evaluation
 - choice of the used electrical machine type
 - different types of PMSM
 - the issue of losses
 - iron losses
 - losses in permanent magnets
 - steel requirements in HEV

- overview: hybrid systems
 - functionality, configuration, advantages and disadvantages
- overview: typically used electrical machines
 - advantages and disadvantages, evaluation
 - choice of the used electrical machine type
 - different types of PMSM
 - the issue of losses
 - iron losses
 - losses in permanent magnets
 - steel requirements in HEV

Overview: hybrid systems

- starter (DC-machine; 1-2.5 kW) starts ICE
- generator (Lundell, clawpole-alternator;
 - 1-3kW) power supply for electrical
 - equipment, charges battery

- starter-generator combines starting and power supply operation (2-3 kW)
- functionality:
 - fast start/stop of ICE
 - generator operation

- electrical machine (10-15 kW) integrated in the drivetrain
- functionality
 - start/stop
 - generator operation
 - boost operation
 - recuperation

4 Institute of Electrical Machines

Overview: hybrid systems

INSTITUT FÜR ELEKTRISCHE MASCHINEN LEHRSTUHL FÜR ELEKTROMAGNETISCHE ENERGEWANDLUNG MIEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHER

- + ICE in optimal operating point
- + drive without ICE is possible → "zero emission"
- + good weight arrangement is possible, due to separate arrangement of the machines and the engine
- several transformations of energy
 - \rightarrow lower overall efficiency

- ICE mechanically connected to the wheels
 → gear
- + less transformations of energy
 - \rightarrow better overall efficiency than series system
- + "down-sizing" of the ICE is possible
- + four operating points available:
 - electrical traction
 - ICE-traction
 - ICE-traction + charging of battery
 - electrical- and ICE-traction ("boost" at peak load)

- + continuous combination of series and parallel hybrid system
 - \rightarrow overall efficiency like parallel hybrid system
- + "down-sizing" is possible
 - \rightarrow less frictional losses
 - \rightarrow better overall efficiency
- no conventional drivetrain (planetary gear), more complicated

most widely applied concepts are: mild hybrid

- intermediate step between conventional and full hybrid system
- only small-power electrical machine (not rated for electrical traction)
- fuel save of about 10-15% (start/stop, recuperation)

parallel hybrid

- better overall efficiency than series system
- electrical traction, ICE-traction, ICE-traction + charging the battery, boost
- fuel save > 15%

power-split hybrid

- continuous combination of series and parallel hybrid system
- best fuel save > 20%

fuel-save capability depends on electrical power

 \rightarrow the higher the hybridization the better the fuel save

overview: hybrid systems

- functionality, configuration, advantages and disadvantages
- overview: typically used electrical machines
 - advantages and disadvantages, evaluation
 - choice of the used electrical machine type
 - different types of PMSM

the issue of losses

- iron losses
- losses in permanent magnets
- steel requirements in HEV

Overview: typically used machines

HEV	driveline	HEV	driveline
PSA Peugot-Citroen / Berlingo Dynavolt (Frankreich)	DC (1999, series)	VW / Touran Eco.Power II (Deutschland)	PMSM (2006,parallel)
Holden / ECOmmodore (Australien)	SRM (2002, parallel)	Mazda / Tribute (Japan)	PMSM (2007, power split)
Nissan / Tino (Japan)	PMSM (2000, parallel+CVT)	PMSM (2000, parallel+CVT)	
Ford / Mariner (USA)	PMSM (2006, power split)	Dodge,DaimlerChrysler / Durango (Deutschland/USA)	IM (200 7 ,TTR)
Toyota / Prius (Japan)	PMSM (1997, power- split)	BMW / X5 (Deutschland)	IM (2004, parallel)

Examples of hybrid vehicles:

- all configuration types are available on the market
- car producers use different motor types → they evaluate the concepts differently
- comparative analysis of all motor types is necessary to acquire a good understanding of the different concepts

several

published

- distinctive

similarities

evaluations :

- some differences

	IM		SRM		PMSM / BLDC	
	motor	converter	motor	converter	motor	converter
efficiency	+	-	- / 0	0	+	+
reliability	+		0		-	
power density	-	-	0	0	+	+
torque ripple	+		-		0	
overload capicity	+		-/0		0	
size	-		0 / +		+	
cost	+	-	0	0 / +	-	0 / +
max. revolution	0		+		-	
controler complexity		-/0		+		- / 0

IEEE AES Systems Magazine

	DC	IM	PMSM	SRM
max. efficiency (%)	85-89	94-95	95-97	90
efficiency (load 10%) (%)	80-87	79-85	90-92	78-86
max. revolution (rpm)	4000-6000	9000-15000	4000-10000	15000
cost/torque (\$/kW)	10	8-12	10-15	6-10
cost of controller	1	3.5	2.5	4.5
reliability	good	best	good	good

Nippon Steel Technical Report

	DC	IM	PMSM	SRM
power density	2,5	3,5	5	3,5
efficiency	2,5	3,5	5	3,5
controllability	5	5	4	3
reliability	3	5	4	5
technolocical maturity	5	5	4	4
cost	4	5	3	4

points: 1 (min) – 5 (max)

IEEE Transactions on Vehicular Technology

Comparative analysis: conclusion

	DC	IM	PMSM	SRM	TFM
power density		0	+ +	0	+ +
efficiency	-	+	+ +	0	
cost	+	+ +	-	+	
reliability	0	+ +	0	+	
technolocical maturity	+	+	Ο	0	
controllability, cost	++	0	+	0	

- DC best and inexpensive controllability, bad efficiency and power densityIM inexpensive machine with best reliability
- PMSM best efficiency and highest power density, but expensive
- SRM good cost and reliability, but has not left prototype status yet (restricted use due to their noise and vibration)
- TFM highest power density, but complex design \rightarrow very expensive

The purpose of hybrid electrical vehicles is to save fuel \rightarrow a high efficiency machine with less weight (high power density) is needed

→ PMSM most suitable for HEV (mostly used machine type)

advantages of buried magnets compared to surface mounted magnets :

- additional reluctance torque due to difference of reactance X_d and X_q \rightarrow increased power factor, wider speed range
- less eddy-current losses in the magnets
- greater overload capability

Overview: typically used machines

The choice of motor type depends on the hybrid system

- hybridization (electrical power), installation space, ...
- frequency distribution of the machine's operation points (example of parallel hybrid)

- overview: hybrid systems
 - functionality, configuration, advantages and disadvantages
- overview: typically used electrical machines
 - advantages and disadvantages, evaluation
 - choice of the used electrical machine type
 - different types of PMSM

the issue of losses

- iron losses
- losses in permanent magnets

steel requirements in HEV

- Field variation with time in magnetic materials
 → eddy currents → Joule losses
 > by starsais losses
 - \rightarrow hysteresis losses
- Iron losses are reduced by
 - \rightarrow core lamination
 - → material choice (soft magnetic)
- Iron losses are a 2^d order term in the power balance of the system
 → neglected in the FE model
 - \rightarrow calculated by post-processing

Bertotti's general formula

$$P_{Fe} = P_h + P_{wb} + P_e$$

• Eddy current losses

$$P_{wb} = \frac{\pi^2 d^2 f^2}{6 \cdot \rho \cdot \rho_e} \int \left(\sum_{\nu=1}^{\infty} \nu^2 (B_{\nu,r}^2 + B_{\nu,t}^2) \right) dV$$

• Hysteresis losses

$$P_{h} = \sigma_{h} \int \left([1 + c(r-1)] f (B_{\max}^{2} + B_{\min}^{2}) \right) dV \qquad c = \frac{B_{\min}}{B_{\max}}$$

• Excess losses

$$P_{e} = \sigma_{e} f^{1,5} \int \left(\sum_{\nu=1}^{\infty} \nu^{1,5} (B_{\nu,r}^{1,5} + B_{\nu,t}^{1,5}) \right) dV$$

Improved model

• Correction for rotational hysteresis

$$P_{h} = \sigma_{h} \int \left([1 + c(r-1)] f (B_{\text{max}}^{2} + B_{\text{min}}^{2}) \right) dV$$
$$c = \frac{B_{\text{min}}}{B_{\text{max}}}$$

Correction for skin effect in laminations

$$k_{wb} = \frac{\pi^2 d}{6\rho} \left[\frac{\frac{1}{m} \sinh(md) + \frac{2}{m} \sin(md)}{\cosh(md) + 2\cos(md)} \right]; \qquad k_{wb0} = \frac{\pi^2 d^2}{6\rho}$$

• Correction for hysteresis losses $(2 \rightarrow \alpha)$ $P_h = \sigma_h f (B_{\text{max}}^{\alpha} + B_{\text{min}}^{\alpha})$

Match between measured losses and the improved loss model based on Bertotti's formula

Typical iron loss distribution in the stator of a permanent magnet machine.

- Plastic bonded and ferrite have a high resistivity
- Resistivity of sintered rare-earth magnets is much lower (typically $0.5-1.5\mu\Omega m vs 0.1\mu\Omega m$ for Fe)
- high energy density magnets are thus electrically conductive → Joule losses
- NdFeB magnets demagnetize at about 120 C (up to 200 C)
- Magnet losses can be reduced by segmentation

- overview: hybrid systems
 - functionality, configuration, advantages and disadvantages
- overview: typically used electrical machines
 - advantages and disadvantages, evaluation
 - choice of the used electrical machine type
 - different types of PMSM
 - the issue of losses
 - iron losses
 - losses in permanent magnets
 - steel requirements in HEV

- Hybrid Electrical Vehicles (HEV) are developed to reduce fuel consumption, they must assure a sufficient travel range with a finite battery capacity, due to the compact assembly and the near combustion engine, the additional heat development should be as low as possible
 → a good efficiency is required.
- With regard to the reduction of fuel consumption, the weight of the machine must be as low as possible, high output power at limited installation space is necessary
 → a high power density is required.
- The vehicle must assure a good durability and a manageable maintenance
 → a good reliability is required
- The vehicle must be affordable compared to conventional motor vehicles
 → inexpensive production, costs as low as possible

improvement of machine parameters and influence of magnetic material:

efficiency
 PMSM: high iron loss (smaller copper loss due to less excitation current) → decrease iron loss
 IM: high copper loss (due to excitation current)
 → better magnetization decrease copper loss and total loss common: decreasing thickness suppress eddy current loss

reliability increase mechanical strength (e.g. for buried magnets in PMSM) decrease iron loss to prevent heat deterioration

power density/increase magnetic permeability (to increase torque)sizedecrease iron loss to improve cooling demand and decreasethe possible size

costimprove the punchability
(softer materials make rolling or punching operations easier
and extend the life of punching dies)

Thank you for your attention.