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Abstract: The electromagnetic excited audible noise of elec-
trical machines can be mostly attributed to to radial forces on
stator tooth-heads. Classical noise analysis approaches focus
then on the wave numbers and frequencies of the spectral de-
composition of the air gap field b(x, t). Numerical approaches
on the other hand, make it possible to compute the magnetic
field, and thus the force amplitudes, with a much greater ac-
curacy. The approach presented in this paper combines the
benefits of both approaches by firstly performing a numerical
field analysis, then transforming the radial air gap field into
the frequency domain, and finally performing a matrix convo-
lution. The latter operation reveals the relationship between
air gap field harmonics and the corresponding force waves
acting on the stator teeth. The proposed method is demon-
strated on a PMSM motor, and numerical results are given.
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I. INTRODUCTION

The reduction of audible noise in electrical machines is
attracting more and more attention. Designing low noise
electrical machines requires a good understanding of the
causes of noise excitation.

Classical analytical approaches for noise analysis in
electrical machines rely on the identification of the space
and time harmonics in the air gap field that generate radial
magnetic force waves [1], [2]. The causality relation be-
tween force waves and field harmonics can be traced back
this way. The drawback of such methods, however, is the
limited accuracy of the air gap field and magnetic force
wave amplitudes.

Numerical simulations, with e.g. the Finite Element (FE)
method, are able to capture finer details and allow an ac-
curate determination of air gap field and magnetic force
amplitudes [2], [3] and [4]. Under the standard linear as-
sumption, the vibroacoustic problem is most commonly
solved in the frequency domain, either by modal analy-
sis and superposition, or by immediate harmonic analysis.
In both cases, the computed electromagnetic force exci-
tations are transformed into the frequency domain. Be-
sides the Fourier transform of time waves, spatial waves
are also transformed in order to identify the spatial wave
numbers of the air gap field. Comparing the wave numbers
and frequencies with those obtained from analytical mod-
els, it is possible to identify which magnetic field harmonic
predominantly contribute to a given force wave [5].

However, it is not possible by this approach to find out
the exact composition of each force wave. The approach
presented in this paper overcomes this fundamental draw-
back by Fourier transforming the magnetic field in time
and space directly so as to obtain a representation of the

air gap field as a function of wave numbers and frequen-
cies.

The outline of this paper reads as follows: First the anal-
ysis of magnetic force waves by means of the analytical
model is explained. Afterwards a brief review of the two-
dimensional discrete Fourier transform (2D DFT) and the
usage of space vectors is given. The subsequent section
presents numerical results for one particular example ma-
chine, and a summary concludes the paper.

II. GENERATION OF MAGNETIC FORCE WAVES

The air gap field in electrical machines cause force densi-
ties on the permeable material of the stator and rotor teeth.
Featuring different frequency components, these forces are
responsible for mechanical vibrations that radiate air-borne
sound.

Magnetic forces acting on a given medium are the di-
vergence of the electromechanical tensor of that medium.
Each medium has its own electromechanical tensor, and
that of empty space, or air, is the celebrated Maxwell stress
tensor [6]. In consequence, magnetic forces come un-
der volume and surface density form. In saturable non-
conducting materials, the volume density is basically re-
lated with the gradient of the magnetic reluctivity, and it is
usually negligible with respect to the surface force density.
The latter, located at material discontinuities (e.g. on the
stator surface in the air gap), is the divergence in the sense
of distribution of the electromechanical tensor. It can be
shown [7] that it has a normal component only, whose am-
plitude is

Pr = [Br(H1r −H2r)− (w′1 − w′2)] , (1)

whereBr is the radial magnetic flux density at the interface
between the stator and the air gap. H1r and H2r are the
radial magnetic field strength in the air and in the stator
iron, respectively. The magnetic co-energy density w′ is
related to the magnetic energy density w by

w′ = H(B)·B−w(B) = H(B)·B−
∫ |B|

0

|H(x)|dx (2)

Due to the constant magnetic permeability of air, w′1 is

w′1 = H ·B − 1
2
H ·B =

|B|2

2µ0
, (3)

where µ0 denotes the magnetic permeability of vacuum.
If the permeability of the iron cannot be considered con-
stant, the magnetic energy term of the iron has to be de-
termined by means of numerical integration along the BH-
curve, otherwise, i.e. in the linear case, (1) can be simpli-
fied to

Pr =
1
2

[Br(H1r −H2r)−Ht(B1t −B2t)] (4)



If in addition, the permeability of the iron is sufficiently
large and the magnetic field strength in the iron can be ne-
glected, the magnetic force density is finally approximated
by

Pr =
B2
r

2µ0
. (5)

In steady state operation, the air gap field is periodic in
time and space, and it is commonly described by a Fourier
series of a one-dimensional wave by [1]

b(x, t) =
∞∑
i=0

B̂i cos(νix− ωit−Ψi) , (6)

where νi is the wave number, also called “number of pole
pairs“, and ωi is the corresponding frequency of one par-
ticular wave. Applying (5) gives the force density in the
air gap

p(x, t) =
1

2µ0

 ∞∑
j=1

B̂j · cos(νjx− ωjt−Ψj)

2

=
1

2µ0

∞∑
k=1

∞∑
l=1

B̂kB̂l · cos(νkx− ωkt−Ψk)

· cos(νlx− ωlt−Ψl)

=
1

2µ0

∞∑
k=1

∞∑
l=1

B̂kB̂l
2

· cos((νl ± νk)x− (ωl ± ωk)t−Ψl ±Ψk)

=
∞∑
k=1

∞∑
l=1

P̂kl · cos(rklx− ωklt−Ψkl) .

(7)

with

P̂kl =
B̂kB̂l
2µ0

, rkl = νl ± νk, ωkl = ωl ± ωk, (8)

Force waves combine magnetic flux density waves two by
two. As the wave numbers of the force waves are strongly
related with the vibrational eigenmodes of the stator, they
are also called mode numbers.

One common method to analyze magnetic force density
waves is Jordan’s combination table [1], by which the air
gap field b(x, t) is calculated from the permeance function
of the machine and the magnetomotive forces(MMF). As
shown in Table I, the causes of typical air gap field har-
monics can be derived. The wave numbers of harmonics
excited by stator or rotor slotting, winding distribution or

TABLE I: WAVE NUMBERS AND FREQUENCIES OF
TYPICAL AIR GAP FIELD HARMONICS.

Cause Wave number ν Frequency
order ω/ω0

Stator slotting gN1 + p, g ∈ N 1
Rotor slotting (IM) gN2 + p, g ∈ N 1 + gN2

p

·(1− s)
Stator wind. distr. p(6g + 1), g ∈ Z 1
Current harmonic µ p(6g + µ), g ∈ Z µ
Saturation 3p 3

saturation are well known and described by the number of
stator and rotor slotN1 andN2, the number of pole pairs p,
the frequency of the fundamental component fp. Simplify-
ing assumptions and effects like saturation diminish the ac-
curacy of quantitative statements concerning the amplitude
of higher harmonics. In addition, it happens in practice that
force density harmonics are obtained by FE analysis, that
were not identified by the analytical model.

III. ANALYSIS OF MAGNETIC FORCE DENSITY
WAVES USING NUMERICAL SIMULATION DATA AND A

CONVOLUTION APPROACH

In comparison to the analytical approach, a two-
dimensional electromagnetic FEM simulation provides an
accurate representation of the magnetic flux density dis-
tribution. The air gap field can be sampled in time and
space and the Fourier series coefficients can subsequently
be approximated by means of the DFT. Since many air gap
field waves combinations have the same wave numbers, a
magnetic force density harmonic is usually the geometrical
sum of a number of pairs of air gap field harmonics. The
common approach of applying Fourier analysis to the force
densities does not provide information about this compo-
sition. Before discussing the presented approach, the two-
dimensional DFT and the usage of space vectors is briefly
reviewed.

A. Two-dimensional Fourier analysis

Say T > 0, ω = 2π
T and f : [0, 2π] × [0, T ] → C is

a piecewise differentiable function. Then f can be repre-
sented by a Fourier series:

f(x, t) =
∞∑

n=−∞

∞∑
m=−∞

cnme
j(nx+mωt) . (9)

The complex coefficients of the Fourier series are deter-
mined by

cnm =
1

2πT

∫ 2π

0

∫ T

0

f(x, t)e−j(nx+mωt)dtdx (10)

The function f now be sampled at discrete locations in
space

xk = k∆x , k ∈ Z , ∆x > 0 . (11)

and discrete instants in time

tl = l∆t , l ∈ Z , ∆t > 0 (12)

If in addition, f is periodic in space and is sampledN times
(2π = N∆x) and if it is also periodic in time with M
sample points (T = M∆t), then the function can be com-
pletely described by a matrix Y ∈ CN×M . For the sake of
simplicity N,M ∈ N be odd.

The two-dimensional discrete Fourier transform (2D-
DFT), as approximation for the Fourier series of the
function is defined as unique invertible linear mapping
2D-DFT : Y ∈ CN×M → Ȳ ∈ CN×M by means of
the spectral coefficients:

c̄nm =
1

NM

N∑
k=0

M∑
l=0

ykle
−j(nxk+mtl) , (13)



where ykl are entries of the matrix Y ∈ CN×M and ȳnm
are entries of the matrix Ȳ ∈ CN×M . The inverse map-
ping is called the two-dimensional inverse Fourier trans-
form (2D-IDFT) and is defined by

ykl =
N−1∑
n=0

M−1∑
m=0

ȳnme
j(nxk+mtl) . (14)

There are algorithms, such as the Fast Fourier Transform
[8] that efficiently compute (13) and (14).

The matrix Y approximates the function f , and Ȳ its
spectrum. If f is real, i.e. ynm ∈ R ∀n,m, then it can be
written in the following form:

f(x, t) ≈
N−1∑
n=0

M−1∑
m=0

Anm cos(nx+mωt+ ϕnm) (15)

This can be split into three parts:

f(x, t) ≈a00

2
+

(N−1)/2∑
n=1

An,0 cos(nx+ ϕn,0)

+
N−1∑
n=0

(M−1)/2∑
m=1

Anm cos(nx+mωt+ ϕnm)

(16)

Therein, a00 corresponds to the DC component and zero
order mode of the function f , An0 are all DC compo-
nents of the space harmonics. The remaining entries, e.g.
An,m ∀m = 1 . . . (M − 1)/2, n = 0 . . . N − 1, deter-
mine the time and space harmonic waves of f . Therefore,
only the latter term of (16) is relevant for vibration anal-
ysis, as it can represent forward and backward traveling
waves. Note that this double sum ranges from 1 to only
(M − 1)/2 which means, that the transformed matrix Ȳ
only contains half as much entries as Y . However, these
entries are complex in contrast to the entries of Y , which
have been assumed to be real. Practically, that means only
positive frequencies, but positive and negative wave num-
bers occur. Of course, the definition could also be chosen
to have positive and negative frequencies and only positive
wave number. The first convention is used in this paper.

The coefficients in (15) and (16) are determined by

anm = cnm + c(N−n)(M−m) (17)
bnm = j(cn,m − c(N−n)(M−m)) (18)

Anm =
√

(anm)2 + (bnm)2 and (19)

ϕn,m = arctan
(
bnm
anm

)
. (20)

B. Concept of space vectors

Space vectors are frequently used as a tool to describe
and calculate the flux model of vector controlled electri-
cal machines under various operation modes. However,
space vectors offer also a more general description for ar-
bitrary one-dimensional harmonic waves in electrical ma-
chines. A graphic definition of space vectors defined as
complex numbers was first proposed for electrical ma-
chines by Kovcs and S̆tĕpina. It allows a handling of har-
monic waves in a convenient way [9]. A single harmonic

Figure 1. General illustrations of one-dimensional harmonic waves,(a)
wave with p=5, (b) value along angle, from [9].

wave can be expressed by

f(α) = Fp · cos[p(α− α0) + ω(t− t0)]

= Fp ·Re{ej(pα0+ωt0)e−j(pα+ωt)}.
(21)

The space vector is defined as the complex number

F = Fp · ej(pα0+ωt0). (22)

In this way, the air gap field and magnetic force waves can
be described by rotating vectors in the complex plane. The
magnitude of the vector corresponds to the wave ampli-
tude, whereas the angle corresponds to the phase shift as
depicted in Figure 1.

C. Convolution approach

In the sampling procedure in space and time, a full pe-
riod and a full revolution of the FEM solution data is stored
into matrixB. In order to consider the magnetic force den-
sity waves, the magnetic force density matrix P is created
by applying (5) to each matrix entry bkl. Subsequently,
a two-dimensional DFT of P provides the approximated
Fourier series coefficient p̄nm. Path (B,P, P̄ ) in Figure 2
illustrates this approach. The matrix P̄ contains space vec-
tors of harmonic magnetic force waves.

Path (B, B̄, P̄ ) in Figure 2 indicates an alternative way
of calculating magnetic force density waves P̄ . First, the
2D DFT is applied directly to the air gap field matrix B.
Then, P̄ is obtained by matrix convolution. The two-
dimensional periodic matrix convolution

Z = X ∗ Y (23)

of two given matrices X,Y ∈ CK×L is defined by

zs,t =
K∑
k=1

L∑
l=1

yk,l · ys−k,t−l , (24)

It can be shown that a multiplication in time domain, e.g.
B2 corresponds to a convolution in frequency domain, e.g.
B̄ ∗ B̄ [8].

B
2D-DFT−−−−→ B̄y· y∗

P
2D-DFT−−−−→ P̄

Figure 2: Commutative diagram.



TABLE II: CONTRIBUTING AIR GAP FIELDS.

r = −2; ω/ω0 = 2
ptot = 24556 N/m2 < 115o

Space vector ω/ω0 ν ω/ω0 ν
A 2 -2 4 -4
B 4 -4 6 -6
C 1 -1 5 -3
D 3 -3 5 -5
E 1 -1 1 -1

Re

Im

ptot

A

B
C

D
E

Figure 3. Space vector diagram for r = −2 and ω/ω0 = 2.

Applied to the air gap field DFT matrix, a periodic
matrix convolution combines all matrix entries with each
other:

P̄ =
1

2µ0
· B̄ ∗ B̄. (25)

This approach seems to be complex and costly. A com-
plete convolution (24) would indeed be very time consum-
ing. However, a complete convolution is not necessary
since only a very small number of combination pairs do
contribute significantly to the magnetic force density wave
that really cause audible noise. Therefore, only the matrix
entries of b̄nm, whose amplitude exceed a chosen threshold
need to be considered in the calculation.

The advantage of this approach in contrast to path
(B,P, P̄ ), arises from the fact that each air gap field con-
volution pair is known and can be stored. Thus, for each
resulting force density wave p̄nm a set of pairs

p̄nm : {(b̄n1m1 , b̄n2m2); (b̄n3m3 , b̄n4m4); . . .} (26)

is stored.
As an example result of such calculation, Table II shows

the largest five contributions to the second order, mode
two, excitation force density wave. The wave numbers
and frequency orders must be added or subtracted to ob-
tain r = −2 and ω/ω0 = 2 according to (8).

D. Space vector diagram

Following the convolution approach (II), each magnetic
force wave can be decomposed into the geometric addition
of partial space vectors as shown in Figure 3, which rep-
resents the same data as Table II. The depicted magnetic
force density wave has mode number r = −2 and and a
frequency order of ω/ω0 = 2. Each of the partial vectors
A, B, C etc. is associated with an air gap field combina-
tion pair. The partial vectors are sorted according to their

Figure 4. Stator and rotor of four pole example PMSM with field lines.

Figure 5: FE mesh.

magnitude. The broken line is the total magnetic force den-
sity vector calculated using path (B,P, P̄ ). Obviously, the
chain of partial vectors adds up to the total vector. A trun-
cation error that depends on the chosen convolution thresh-
old and on the number of stored partial vectors leads to a
gap between the total vector and the vector chain.

IV. NUMERICAL RESULTS

A. Example machine

To demonstrate the proposed method, a permanent mag-
net excited synchronous machine (PMSM) is investigated.
It is designed using in-house software for the automated
sizing of PMSM [10]. The machine data is shown in Ta-
ble III. Its cross-section together with the field distribution
in rated operation can be seen from Figure 4. Figure 5
shows the FE mesh, which is used.

The magnetic flux density is sampled in the air gap, this
is done for each time step individually. The radial field
for one time instance and its spatial spectrum can be seen
from Figure 6 and 7, respectively. The spectrum of the
resulting force density waves are shown in Figure 8. The
convolution of the fundamental field with it self typically
yields high amplitudes, in this case it is 162775 N/m2. The
scale of Figure 8, however, was chosen to clearly depict



Figure 6: Radial air gap flux density.

Figure 7: Radial air gap flux density spectrum.

the most relevant higher force density harmonics of modes
r=0,2 and 4 and only the maximum amplitude of the posi-
tive and negative modes is chown.

The convolution approach is applied to the air gap field
sampled in time and space. As a first example, the sec-
ond temporal order, mode 4 force density harmonic, which
is supposed to be excited by the fundamental field convo-
luted by itself, is analyzed. All flux density waves that are
larger than 0.01% of the fundamental field are considered
as convolution partners. The space vector diagram of Fig-
ure 9 shows the three most relevant partial space vectors.
Their wave numbers and orders are given in Table IV. The
fundamental field squared (A) adds by far the largest con-

TABLE III: MACHINE DATA OF THE EXAMPLE PMSM.

Machine data Value
Number of pole pairs p 2
Rated power Pn 2 kW
Rated speed nn 4500 rpm
Rated voltage Vn 230 V
Rated current In 11.2 A
Outer stator diameter Do 110 mm
Inner stator diameter Di 60 mm
Mechanical air gap δ 0.8 mm
Active length lFe 120 mm
Number of stator slots N1 24

Figure 8: Force density amplitude of different modes.

Re

Im

ptot

A

BC

Figure 9. Space vector diagram for r = −4 and ω/ω0 = 2.

tribution, however, at least one more flux density wave (B)
shows some minor influence.

As a second example, the 12th temporal order, mode
0 force density is considered. As illustrated in Fig-
ure 8 this harmonic has a significantly lower amplitude of
1042 N/m2, but is still among the most significant higher
frequency orders. The space vector diagram of Figure 10
shows a different geometric addition. The force wave is
not determined by only one partial vector, but it contains
significant at least two equally significant partial vectors A
and B. The wave numbers and frequency orders are given
in Table V. A small gap between the total force density
vector and the sum of the vectors A to F show the asymp-
totic nature of the proposed method. The wave numbers
and frequency orders of the considered force density waves
are summarized in Table II. Further application examples
of the proposed method can be found in [11].

B. Comparison with full stress tensor calculation

To justify the approach and to investigate its limits, the
force density in mode/frequency domain obtained from
stress tensor using (1), which would be typically used for
a subsequent structural dynamic simulation, is compared
to the simplified formula (5). Figure 11 shows the relative

TABLE IV: CONTRIBUTING AIR GAP FIELDS.

r = −4; ω/ω0 = 2
ptot = 170258 N/m2 < 21o

Space vector ω/ω0 ν ω/ω0 ν
A 1 -2 1 -2
B 1 -2 3 -6
C 5 -10 7 -14
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F

Figure 10. Space vector diagram for r = 0 and ω/ω0 = 12.

TABLE V: CONTRIBUTING AIR GAP FIELDS.

r = 0; ω/ω0 = 12
ptot = 1042 N/m2 < 40o

Space vector ω/ω0 ν ω/ω0 ν
A 1 -26 13 -26
B 1 -2 11 2
C 1 -2 13 -2
D 5 14 7 -14
E 3 18 9 -18
F 3 -30 15 -30

deviation between those two. For the fundamental field
square, its magnitiude is used as reference value, for all
other waves, 2000 N/m2 is used as reference value, which
corresponds to the maximum amplitude shown in Figure 8.
The deviation of the angle between the calculation using
(1) and (5) is shown in Figure 12 for all waves with an am-
plitude larger than 600 N/m2, which is less than 0.5% of
the amplitude of the fundamental field squared. It can be
seen that the relative error is below 40% and the angle error
is less than 30o for all shown harmonics. The deviation is
still significant as to still use the full stress tensor calcula-
tion for the excitation of precise structural dynamic simu-
lations, however, the obtained accuracy can be considered
sufficient for studying the contributions of the individual
flux density waves to a particular force wave.

Figure 11: Deviation between MST and B2/2µ0.

Figure 12: Deviation between MST and B2/2µ0.

V. SUMMARY AND CONCLUSIONS

The method presented in this paper allows the determi-
nation of the contributions of partial force density waves
to a specific force density waves. The approach is based
on the 2D Fourier transform representation of the mag-
netic flux density in the air gap and its convolution with
itself. It is shown that the convolution can be limited to
the computation of the most relevant matrix entries. As
an example, the air gap field and the force density waves
of a PMSM are analyzed to demonstrate the effectiveness
of the proposed approach. For this example, the error be-
tween the full stress tensor calculation and its simplified
version is analyzed. The error is not negligible, but is still
small enough to apply the proposed approach in noise and
vibration diagnosis of electrical machine.
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