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Résumé — The calculation of motion-induced eddy currents in massive
conductors yields a 3D convection-diffusion problem. Up-winding and
SUPG formulations are well established methods to obtain stable dis-
cretizations of the scalar convection-diffusion equations in the case of
singular perturbation, but there is very little reported experience with
the stability of convection in the vector case. Numerical experiments
with the up-winding method proposed by Xu et al. [1] are presented
and analysed. Their scheme is interpreted in geometrical terms, and
an alternative approach based on a consistent discretization within the
finite element Galerkin context of the Lie derivative implied by the con-
vection phenomenon is proposed.

I. INTRODUCTION

Eddy currents induced in moving massive conductors
have important engineering applications, such as electro-
magnetic braking and non-destructive testing. As the ve-
locity of moving conductors increases, solutions by stan-
dard Galerkin Finite Element (FE) formulations usually de-
velop spurious oscillations. The Streamline Upwind Petrov
Galerkin (SUPG) formulation is a well-established stabi-
lization method in computational fluid dynamics [2], whose
principle is to mimic the flow of information by giving
more importance to data that comes from the upwind re-
gion, whereas data that comes from the downwind region
is given lesser importance or even neglected [3]. However,
there are very few publications, besides the paper by Xu et
al. [1], describing the application of the SUPG principle to
3D electromagnetic problems. After implementation, it turns
out that this scheme is very sensitive to the discretization. A
deeper theoretical analysis is proposed in this paper, based
on the work by Heumann [4], who has shown, in the scalar
case, that in a variational setting the discrete Lie derivative is
identical to a Galerkin method using some inexact first order
upwind quadrature.

II. VECTOR POTENTIAL 3D FORMULATIONS

Let W p(Ω), p = 0, 1, 2, 3 be the sets of differential forms
of degree p defined on Ω. The equations to solve are

curlh = j (1)
e = −Lv a− gradu (2)
j = σe (3)
b = curla = µh (4)

with h ∈ W 1(Ω) the magnetic field, j ∈ W 2(Ω) the current
density, a ∈ W 1(Ω) the magnetic vector potential and u ∈
W 0(Ω) the electric scalar potential. In (2),Lv represents the
co-moving time derivative, also called material derivative,
associated with the flow velocity v. Taking into account the
fact that a is 1-form, the co-moving time derivative can be
expressed in terms of classical vector analysis operators as

Lv a = ∂ta + grad (v · a)− v × curla. (5)

Substituting (2)-(4) into (1) yields

curlµ−1curla = −σ (Lv a + gradu) . (6)

The Petrov-Galerkin weak formulation consists in multiply-
ing the latter with a trial function w and stating, after inte-
gration by parts, that the equation∫

Ω

µ−1curla · curlw dΩ+
∫

∂Ω

(w×µ−1curla) ·nd∂Ω

= −
∫

Ω

σ (Lv a + gradu) ·w dΩ (7)

must hold for all w chosen in a suitable function space. Sub-
stituting (5), one obtains finally∫

Ω

µ−1curla·curlw dΩ+
∫

∂Ω

(w×µ−1curla)·nd∂Ω =

−
∫

Ω

σ (∂ta− v × curla + grad (u + a · v)) ·w dΩ.

(8)

III. SUPG SCHEME

Let W p
h (Ω) be the discrete equivalents for the W p(Ω) sets

defined above, i.e. the Whitney form sets. The Stream-
line Upwind Petrov Galerkin formulation for Navier-Stokes
equation consists in choosing the trial function as

w = w0+τ
v · gradw0

||v||2
, τ =

vh

2
(coth

Pe

2
− 2

Pe
) (9)

with w0 ∈ W 0
h (Ω) and Pe the local Peclet number of the

mesh.
In order to obtain a stabilized formulation for the elec-

tromagnetic problem under consideration, an upwinding
method for differential forms of degree 1 must be deter-
mined. There is however very little publications on this
topic. In [1], a vector generalization of (9) is proposed

w = w1 − τσv × curlw1 (10)

with w1 ∈ W 1
h (Ω) and the local Peclet number and the mesh

size in the direction of the flow defined as

Pe = µσvhv , 2hv =

(∑
n

v
v
· gradw0

)−1

. (11)

This proposition comes however with no theoretical justifi-
cation.



Fig. 1. Geometry of the finite element model for the electromagnetic brake.
Due to the symmetry, only one half pole is modelled.

Fig. 2. Eddy currents in the mover seen from below.

IV. NUMERICAL RESULTS

The SUPG scheme proposed by Xu et al has been applied
to the computation of the electromagnetic braking effect ex-
erted on an infinitely long steel mover by a standard linear
motor stator. The mover is a massive piece of conducting
steel driven at a fixed velocity along the x-direction. In the
first instance, mirror symmetry with respect to the x−z plane
and periodicity along the x-direction are assumed, which
means that end effects are neglected.

This allows reducing the model to the symmetry cell de-

picted in Fig. 1, which contains one coil wound around a
magnetic core and supplied with a DC current. The steady
state problem is solved with the standard A−V magnetody-
namic 3D formulation, assuming ∂ta = 0.

Different numerical experiments will be presented in the
full paper. In general, the system turns out to be very sen-
sitive to the local mesh refinement, which acts on the be-
haviour of the SUPG scheme through the definition of the
local Peclet number (10). Fig. 2 represents the induced cur-
rent density in the mover seen from below, for an velocity
v =10 km/h. As the speed inscreases, convergence becomes
rapidly more difficult, which tends to indicate that the up-
winding shape function can be improved. This is the purpose
of the next section.

V. THE GEOMETRY OF THE CONVECTION
OPERATOR

In [4], a geometrical interpretation for the discretization of
the convection operator in terms of Whitney forms, the Lie
derivative and the extrusion operator defined by Bossavit in
[5] is presented. It is shown that this discretization intro-
duces naturally a kind of up-winding quadrature for scalar
functions, i.e. for Whitney forms of degree 0. This interpre-
tation provides a consistent mean for generalizing the SUPG
scheme to differential forms of higher degrees, and in par-
ticular to Whitney edge elements. The theoretical develop-
ments as well as numerical comparisons with the scheme of
Xu will be presented in the full paper.
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