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Abstract: Mathematical background for the definition of the lumped parameters of the equivalent T-diagram of
induction motors is described. It is shown how one can systematically extract the lumped parameters from a
number of finite element transient simulations.
1 Introduction
The equivalent T-circuit of an induction machine is a very
useful and widely used representation found in every
engineering book. It is also becoming increasingly important
with the development of vector control, as the values
calculated with the equivalent circuit are used in the control
process of the Pulse-width modulation (PWM) inverter. The
T-diagram is, thus, the bridge between the finite element
representation of the motor and the motor controller [1].

A glance into the literature on the subject shows that the
lumped parameters of the equivalent T-circuit are usually
determined empirically, for example [2–7], or on the basis
of an energy analysis [1]. Clearly, there exist several
definitions usually stated without a justification, and a
compelling theoretical framework is still lacking.

Basic principles and mathematical background of the
lumped parameter identification methods in the case of an
induction motor are discussed in this paper. The idea is to
provide a general definition for lumped parameters in the
equivalent T-circuit. This approach enables drawing some
interesting conclusions about the domain of application and
the accuracy of the T-circuit representation of electrical
machines.

2 Principle
The definition of the equivalent T-circuit of an induction
machine is a simplification, whose validity relies on the fact
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that the induction field exhibits a well-defined and
permanent geometrical structure when the machine is
operated in steady state. There is not much quantitative
information to retrieve from the general appearance of the
vector potential plot in an electrical machine, which always
look the same (Fig. 1). On the contrary, this regularity is
precisely the redundancy one attempts to get rid of by
defining the equivalent T-circuit.

The notion of lumped parameters stems from the existence
of a relation between the local variables, which are the
electromagnetic fields (magnetic vector potential a, current
density j and electric scalar potential u), and the associated
global quantities describing the system (flux linkages fr,
electric currents Ir and voltages DUr). Global quantities are
also called integral variables or phase variables, and they are
directly linked with the measurable quantities of the
machine (voltages, currents). See [8] and the references
therein for a detailed theoretical introduction. The next
section shows how one can systematically draw the link
between the local and global quantities.

3 Lumped parameter extraction
3.1 Energy balance in magnetodynamics

The lumped parameters that represent an electrical machine
seen from its stator terminals are the phase voltages DUr ,
the phase resistances Rr , the inductance matrix Lrs and the
electromotive forces Er induced in stator windings by the
rotation of the machine, in which r ¼ 1, . . . , m, where
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m ¼ 3 is the number of phases. One has

DUr ¼ RrIr þ @tfr (1)

¼ RrIr þ (Er þ Lrs@t Is) (2)

where fr is the flux linkage in phase r.

A relation between the local state variable (the vector
potential a) and the global state variables (the phase fluxes
fr) is obtained on the basis of energy considerations.
Multiplying (1) with Ir and summing over all phases gives

X
r

Ir@tfr ¼ �
X

r

RrI 2
r þ

X
r

IrDUr (3)

This equation has a counterpart in the field domain [9]

ð
V

j � Lv a ¼ �

ð
V

j2

s
�

ð
V

j � grad u (4)

where Lv a denotes the material derivative of a, that is, a time
derivative accounting for movement. Equations (4) and (3)
must be identifiable term by term to ensure that the energy
balance in the field domain and in the lumped parameter
domain are equivalent.

The current density j is now expressed in terms of the
currents Ir flowing in the system

j ¼
X

r

Irwr (5)

where the auxiliary field wr can be regarded as the shape
functions of the phase currents Ir. Substituting (5) in (4)
yields definitions for the phase resistances and the phase
voltages

Rr ¼

ð
V

s�1
jwr j

2, DUr ¼ �

ð
V

wr � grad u (6)

Figure 1 Vector potential in an induction motor in rated
conditions
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On the other hand, substituting (5) in

ð
V

j � Lv a ¼
X

r

Ir@tfr (7)

yields a definition for the time derivative of the flux linkage

@tfr ¼

ð
V

wr � Lv a (8)

If the current distribution functions wr are assumed not to
depend on time (which is the case in stranded coils), the
time derivatives can be dropped, and the mapping sought
between a and fr is

fr ¼

ð
V

wr � a (9)

3.2 Discussion

The previous section has provided a theoretical discussion of
the definition (9), which is commonly found in the literature.
In systems with several coils, the relation between fluxes and
currents is usually represented under matrix form as

fr ¼
X

s

Lrs Is (10)

where Lrs is the inductance matrix of the system. Equation
(9), however, does not allow making the separation
between the contribution to the flux fr of the current Ir

flowing in the coil under consideration, and the
contributions of other currents flowing in other coils of the
system. The individual components of the inductance
matrix must therefore be determined by inspection, that is,
by supplying the coils individually one after the other,
identifying each time one column of the inductance matrix
in this manner. This indicates that the superposition
principle is applied, whereas magnetic cores in electrical
machines have nonlinear magnetic behaviour in general.

There are a number of additional difficulties associated
with this method of defining the inductance matrix:

† Equation (9) does not provide a definition for the fluxes
that are not associated with a coil, for example for leakage
fluxes or air gap fluxes.

† It cannot be adapted in a straightforward manner to define
fluxes in massive conductors (e.g. squirrel cage rotor) where
the current shape function wr is not known a priori.

† It is unclear, in the nonlinear case, in which manner the
components Lrs should depend on the different currents Ir

(or the fluxes fr).

This is the reason why most definitions of equivalent circuit
diagrams are rather empirical or pragmatic. If this works fine,
for example, with transformers [10, 11], the extension to an
IET Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
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induction motor is not trivial, essentially because of motion
and skin effects in the squirrel cage bars. The above
questions must indeed be answered if one wants to obtain a
rigorous definition of an inductance matrix in general,
and of the equivalent circuit of an induction motor in
particular.

4 Fields and their integral
quantities
For this purpose, specific notions are introduce first. From a
theoretical point of view, the induction field b can
advantageously be regarded as a map that associates a real
number, the flux w, to any smooth surface S in the system

b : S 7! w ¼

ð
S

b [ R (11)

This map has the natural linear property

ð
S1þS2

b ¼

ð
S1

bþ

ð
S2

b (12)

where S1 and S2 are two arbitrary smooth surfaces. It is
called a differential form of degree 2 in mathematical
language. The vector field b is then a practical
representation of that map. One has the equivalence

ð
S

b ;
ð
S

b � n dS (13)

where n is the unit normal vector to the surface S.

On the other hand, the vector potential a can be regarded
as a map that associates a real number to any smooth curve G
in the system

a : G 7! w ¼

ð
G

a [ R (14)

It is called a differential form of degree 1 and it can also be
represented by a vector field a. One has the equivalence

ð
G

a ;
ð
G

a � t dG (15)

where t is the unit tangent vector to the curve G. Since
b ¼ curl a, by application of Stokes’ theorem, one has a
second definition for the flux through S

w ¼

ð
S

b � n dS ¼

ð
S

curl a � n dS ¼

ð
@S

a � t d@S (16)

where @ is the boundary operator.

Comparing (16) with (9), one sees that the integration is
not done here over a volume, but over a closed curve.
Therefore for the sake of clarity, we have adopted different
Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
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names and notations. The mathematical flux wk should be
carefully distinguished from the flux embraced by a coil fk,
which is obtained by integration over the volume of an
idealised stranded current density.

The magnetic field h and the current density j are also
differential forms. As a differential form of degree 1, the
magnetic field is evaluated on curves and the value is called
the magnetomotive force

f ¼

ð
G

h ¼

ð
G

h � t dG (17)

On the other hand, the current density is a differential form
of degree 2. It is evaluated on surfaces and the value is the
current flowing through S

i ¼

ð
S

j ¼

ð
S

j � n dS (18)

They can also both be represented by vector fields, which
then obey Ampere’s law

curl h ¼ j (19)

It follows

i ¼

ð
S

j � n dS ¼

ð
@S

h � t d@S (20)

The correspondences between local and global quantities in
electrodynamic systems are summarised in Table 1.

5 Skeleton of a and the
co-skeleton
As mentioned above, the vector potential field in an
induction machine in steady-state operation exhibits a well-
defined and permanent geometrical structure where the
different poles and the air gap are clearly visible. In other
words, all vector potential plots look more or less the same
and this regularity is precisely the redundancy, the useless
information, one attempts to get rid of by defining the
equivalent circuit.

Table 1 Relation between local and global quantities in
electrodynamic problems

Local/Field Integral/Measurable

coils a fk

u Uk

j Ik

skeleton a wk

co-skeleton h fk

j ik
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As the vector potential evaluates on closed curves, the first
step is to select the characteristic curves of the a field, that is, a
small set of closed curves, whose associated fluxes give the
most information about the field. Because of the symmetry,
one can restrict the analysis to one pole pair of the
machine. One defines the following characteristic curves:

† C1: A closed curve located in the stator domain that
embraces the maximal flux. This flux is noted as w1. The
closed curve C1 should appear as a couple of points in a 2D
representation. For clarity, it is represented in Fig. 2 by a
surface S1 such that C1 ¼ @S1. Note that this surface is
not unique, although the flux is well defined.

† C2: A closed curve located in the squirrel cage domain that
embraces the maximal flux. This flux is noted w2. C2 is
represented in Fig. 2 by a surface S2 such that C2 ¼ @S2.

† C: A closed curve located in the air gap that embraces the
maximal flux. This flux is noted w. C is represented in Fig. 2
by a surface S such that C ¼ @S.

These three curves define a topological structure with the
form of a double cylinder (Fig. 3), which can be regarded
as the skeleton of the a field. Besides the surfaces S1, S2

and S defined above, two additional cylindrical surfaces are
needed to close the skeleton. The surface S1s is such that
@S1s ¼ C � C1 and the surface S2s is such that
@S2s ¼ C2 � C . They are associated, respectively, with the
leakage fluxes w1s and w2s, and they appear as two
segments in Fig. 2. Note that the skeleton follows the
rotating field, that is, it rotates at the speed v0 ¼ 2pf0=p,
where f0 is the frequency and p the number of pole pairs.

Figure 2 Zoom-in on one pole pair of a typical 2D vector
potential plot in an induction machine, with the skeleton
(above, surfaces S’s perpendicular to the plane) and the
co-skeleton (below, surfaces S�’s in plane)
The Institution of Engineering and Technology 2008
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By Poincaré duality, the skeleton can be associated with a
dual topological structure called co-skeleton, which has the
shape of a pretzel in this particular case, Fig. 3. Each
element of dimension p of the skeleton is associated with
an element of dimension 3� p of the co-skeleton,
(Table 2). Since the skeleton has no points (it is made out
of closed curves only), the co-skeleton has no volume and
is a flat surface. To each skeleton volume corresponds a co-
skeleton point, that is, one point inside each cylinder plus a
third point for the exterior.

One has, thus, the following characteristic surfaces:

† S
w
1 : Surface located in the stat or plane, which embraces

the maximal current. This current is noted i1.

† S
w
2 : Surface located in the rotor plane, which embraces the

maximal current. This current is noted i2.

† S: Surface of the air gap. Note that the external node
of the co-skeleton is any point on the left flank of the

Figure 3 Skeleton (double cylinder) and co-skeleton
(pretzel) with representation of the characteristic fluxes
wk and magnetomotive forces fk

Table 2 Number of topological elements of different
dimensions in the skeleton and the co-skeleton of an
induction machine

Dimension Skeleton Co-skeleton

points 0 0 3

curves 1 3 (C ) 5 (Cw)

surfaces 2 5 (S) 3 (Sw)

volumes 3 3 0

By Poincaré duality, the number of elements of
dimension p in the skeleton is equal to the
number of elements of dimension 3–p in the
co-skeleton. Between parenthesis are the
symbols used in this paper
IET Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
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co-skeleton, since the tangential component of h is zero on
that curve, that is, all circulations vanish.

In particular, the co-skeleton surfaces dual to C1, C2 and C
are S

w
1 , Sw

2 and S
w, respectively.

Whereas the characteristic fluxes wk in the machine are
associated with the closed curves of the skeleton, the
characteristic magnetomotive forces fk and currents ik are
associated with the curves (not necessarily closed) and the
surfaces of the co-skeleton. The names and the positive
orientations of the magnetomotive forces fk ’s are chosen
according to those of the corresponding fluxes wk ’s.

The divergence free character of induction, div b ¼ 0,
yields for any volume V

0 ¼

ð
V

div b dV ¼

ð
@V

b � n d@V (21)

Applying this to the two volumes of the skeleton gives the
topological relations

w1 ¼ wþ w1s

w2 ¼ w� w2s

(22)

On the other hand, applying (20) to the three surfaces of the
co-skeleton yields

i1 ¼ f1 þ f1s

i2 ¼ f2 � f2s

f ¼ f1s � f2s

(23)

Equations (22) and (23) are exact topological relations. They
can be represented by any of the dual equivalent electric
circuits depicted in Figs. 4 and 5.

Figure 4 Electric equivalent circuit representing the
topological relation (22) in the skeleton and (23) in the
co-skeleton

In this circuit, the fluxes wk behave like currents, the
magnetomotive forces fk like voltages and the resistances
represent the reluctances rk
Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
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6 Constitutive relations
The constitutive relations are relations between dual
quantities in the skeleton and the co-skeleton

f1 ¼ r1 w1

f2 ¼ r2 w2

f1s ¼ r1s w1s

f2s ¼ r2s w2s

f ¼ r w

(24)

All the reluctances rk’s are positive, because of the concordant
choice of the positive orientations for the fk’s and the wk’s.

To obtain the classical equivalent circuit of an induction
machine in the end, one has now to recognise that the
dominant reluctances are that of the air gap and that of the
stray flux paths. Consequently, the reluctances r1 and r2 are
negligible and one can reasonably state that

r1 ’ 0) f1 ’ 0 (25)

r2 ’ 0) f2 ’ 0 (26)

Assuming the fluxes wk and the currents ik are known (see the
next section), the remaining reluctances are evaluated as follows

r1s ¼
i1

w1 � w
(27)

r2s ¼
�i2

w� w2

(28)

r ¼
i1 þ i2

w
(29)

They are all positive, since i2 � 0. This can can be written under
matrix form as

w1

w2

� �
¼

1

r1s

þ
1

r

1

r

1

r

1

r2s

þ
1

r

0
BB@

1
CCA i1

i2

� �
(30)

Figure 5 Electric equivalent circuit, dual to the one in Fig. 4

It is associated with exactly the same algebraic relations, but in
this case, the fluxes wk behave like voltages, the magnetomotive
forces fk like currents and the resistances represent the
permeances (rk)21
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This matrix is the discrete Hodge operator [12] associated with
the discretisation of the system by the skeleton and the co-
skeleton.

7 Relation between skeleton
quantities and phase quantities
To show how skeleton quantities and phase quantities are
related, a practical example is considered. Fig. 1 shows the
cross-section of an eight-pole (p ¼ 4) induction motor with
double layer stator currents. The phase quantities (i.e.
related to the stator coils and rotor coils or bars) are defined
as follows. Stator phase currents are assumed sinusoidal

I1K (t) ¼ I1 cos vt � K
2p

m
� aI1

� �
(31)

K ¼ 0, . . . , m 2 1, with m being the number of phases. The
current density in stator slots is then given by

J1K ¼
I1K ZN

AN 1PSP

(32)

with AN 1 the area of a half stator slot, ZN the number of
conductors per half slot and PSP the number of coils
connected in parallel. Now, V1K represents the section of
the K th stator phase coil. This is half the total slot surface
occupied by the conductors belonging to the phase under
consideration (fill factor accounted for in the definition of
the current density). One has

V1K ¼
N1AN 1

2m
(33)

with N1 the total number of half slots. It follows

W1I1K ¼ J1KV1K ¼
I1K ZN

AN 1PSP

�
N1AN 1

2m
(34)

which allows to define the number of turns of the stator phase

W1 ¼
N1ZN

2mPSP

(35)

By (9), the flux embraced by each of the m stator phases of the
machine can be written as

f1K (t) ¼
lz

I1K

ð
V1K

J1K a dV1K (36)

¼
W1lz
V1K

ð
V1K

a dV1K (37)

Because of saturation, they are not necessarily sinusoidal in
time. One can write for the fundamental harmonic
2
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f1K (t) ¼ f1 cos vt � K
2p

m
� af1

� �
(38)

K ¼ 0, . . . , m 2 1, thus defining the amplitude f1 of stator
fluxes.

The corresponding quantities associated with the skeleton
and the co-skeleton are defined as follows. In 2D, the vector
potential writes a ; aez, and a surface whose normal lies
in the study plane is represented by a curve, the boundary
of which is a pair of points with opposite orientations.
The integral of a over such a boundary amounts to evaluating
the difference of the potential between those points. Finding
the closed curve embracing maximum flux thus, amounts,
to finding the maximum and the minimum of the z-
component of the a field computed by means of a transient
2D Finite Element (FE) analysis. At each time step, the
fluxes wk are evaluated from the FE computation as follows

w1 ¼ (aSmax
� aSmin

) � lz (39)

w2 ¼ (aRmax
� aRmin

) � lz (40)

w ¼ (aGmax
� aGmin

) � lz (41)

where lz is the axial length of the machine, and the subscripts R,
S and G denote, respectively, the stator region, the rotor region
and the air gap region.

On the other hand, the currents i1 and i2 are obtained by
applying (20), that is, summing up all currents flowing
through the surfaces S

w
1 and S

w
2 of the co-skeleton, which

are fixed with respect to the rotating field

ik ¼

ð
S

w
k

j � n dSw
k , k ¼ 1, 2 (42)

It is observed that

ik ¼ ikmaxcos(aIk
� afk

), k ¼ 1, 2 (43)

where afk
� aIk

is the phase shift between the flux and the
current in the stator coils (k ¼ 1) and in the rotor bars (k ¼ 2).

After all transient phenomena have vanished out and a
stationary operation has been reached, the skeleton fluxes wk,
the co-skeleton currents ik and the phase shifts aIk

� afk
will

stay nearly constant in time, except for slight fluctuations
because of, for example slotting, and which are averaged out in
practice, since equivalent circuits are not expected to account
for such details. They can all be evaluated from the FE solutions.

The ratio between w1 (39) and f1 is called l

f1 ¼ lw1 (44)
IET Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
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Figure 6 Leakage (left) and magnetising (right) inductances computed at different slips
and the ratio between I1 and i1max is called k

I1 ¼ k i1max (45)

l is proportional to the number of turns of the stator coils and
to the winding factor, accounting for the spatial distribution
of the windings, chording and zoning.

8 Inductance matrix
We can now write

f1

f02

� �
¼ l

w1

w2

� �
(46)

i1

i2

� �
¼

i1max cos(aI1
� af1

)

i2max cos(aI2
� af2

)

 !
¼

1

k
<

I1e jaI1 e�af1

I 02 e jaI2 e�jaf2

( )

(47)

so that the flux-current relation in phasors can be written as

f1e jaf1

f2e jaf2

� �
¼

l

k

1

r1s

þ
1

r

1

r

1

r

1

r2s

þ
1

r

0
BB@

1
CCA I1eaI1

I2eaI2

� �
(48)

We now have the identification

Lh ¼
l

k

1

r
(49)

L1s ¼
l

k

1

r1s

(50)

L02s ¼
l

k

1

r2s

(51)

and the equation

f1e jaf1

f2e jaf2

� �
¼

L1s þ Lh Lh

Lh L02sþLh

� �
I1eaI1

I2eaI2

� �
(52)
Sci. Meas. Technol., 2008, Vol. 2, No. 6, pp. 447–454
10.1049/iet-smt:20080088

Authorized licensed use limited to: RWTH AACHEN. Downloaded on December 15, 20
allows defining the lumped inductances of the equivalent
T-circuit.

9 Results
Fig. 6 shows leakage and magnetising inductances computed
at different slips. The main objective of this paper is to show
that the lumped parameters extracted from the field model of
the induction motor depend considerably on the working
point, especially at small slips where the machine is usually
operated. This has been shown here by varying the slip
over the range [0,1[ with constant stator currents. The
determination of the rotor stray inductance L2s is ill-
conditioned by this approach because, in (28), one has
nearly always w ’ w2 and i2 ’ 0. Another evaluation
method based on the torque is under investigation. Further
work will consist in analysing the relation between the
calculated lumped parameters and the different global
variables describing the system, in order to obtain a
nonlinear equivalent circuit diagram.

10 Conclusion
We have made the distinction between two definitions of
fluxes. Thanks to this distinction, one can clearly separate
the global (integral) quantities associated with stator phases
and rotor coils (or bars) from those associated with the
rotating field, and which are carried by a topological
structure that we have called the skeleton of the vector
potential field. The skeleton, and its topological dual, the
co-skeleton, introduce another set of global quantities
which can be systematically related to those associated with
the stator coils. It makes it possible to deal with fluxes not
associated with coils, that is, air gap fluxes and stary fluxes.
The lumped parameters obtained by the proposed method
turn out not to be constant, whereas most empirical
approaches assume they are. They can be systematically
extracted from FE simulations of the machine and they
deliver a reduced-order model of the induction motor.
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