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Structure-Dynamic Analysis of an Induction Machine
Depending on Stator–Housing Coupling

Christoph Schlensok, Michael van der Giet, Mercedes Herranz Gracia,
Dirk van Riesen, and Kay Hameyer, Senior Member, IEEE

Abstract—The estimation and the calculation of the acoustic
sound of electric machinery are of particular interest nowadays.
Various approaches have been presented, relying either on analyt-
ical or on numerical models. The analytical models presented here
are based on the electromagnetic-field theory. Numerical models
are applied to derive the exciting forces stemming from various
sources and effects. The numerical results have to be verified.
Hence, they are compared with the physically based analytical
results. The radiated noise depends directly on the surface de-
formation of the machine. Therefore, the analysis is focused on
the structure-dynamic vibration. The combined analysis presented
here allows for the reduction of vibration and noise, optimizing
the coupling of the machine’s stator and housing. The studied in-
duction machine’s housing is mounted with six spiral-steel springs
to the stator. With the presented method, the impact of different
numbers of springs is analyzed exemplarily.

Index Terms—Audible noise, deformation, finite-element
method (FEM), induction machine, structure dynamics,
vibrations.

I. INTRODUCTION

THERE HAVE been several contributions to both the
analytical [1]–[3] and numerical [4]–[6] approaches of

estimating the radiated noise of electrical machinery. A com-
parison, as well as a combination, of both methods allows
for more reliable predictions and faster improvements of the
machine’s structure. In this paper, an induction machine (IM)
with squirrel-cage rotor is studied by means of analytical and
numerical methods. At first, the applied models are introduced.
In general, the structure of an IM is not purely cylindrical as the
analytical models of [1]–[3] assume. For comparison reasons,
different numerical finite-element (FE) models are introduced,
and results are analyzed.
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Fig. 1. Simplified analytical model of IM with teeth.

II. ANALYTICAL MODEL

The analytical model [1] is based on the analysis of the force-
wave behavior resulting from the normal component of the air-
gap flux density Bn depending on space x and time t

Fr(x, t) =
B2

n(x, t)
2µ0

(1)

where µ0 is the magnetic field constant. B2
n(x, t) results from

the fundamental and harmonic fields of the stator interacting
with the induced fundamental and harmonic fields of the rotor.
Three major effects are considered in the analytical model:
the fundamental air-gap field, the saturation of the lamination,
and the static and dynamic eccentricities. Each harmonic, i.e.,
each exciting force-wave frequency, results in oscillating space
modes along the circumference of the stator at the air gap. The
mode number r depends on the interacting field components of
stator and rotor.

These force waves excite the structure of the machine, i.e.,
stator and housing. The analytical model simplifies the ma-
chine’s structure to a cylindric ring, as shown in Fig. 1. In
order to include the effect of slotting, the cylinder-ring model is
modified, taking the teeth into account introducing the adjusting
factor

∆ =
yoke weight

tooth weight + yoke weight
. (2)

The weight of yoke and teeth is the equivalent to the corre-
sponding cross sections. The eigenfrequency of r = 0 reads

F0 =
Cs

2π · N · √∆
(3)

with

Cs =

√
E

ρ
. (4)
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TABLE I
STATIC DEFORMATION FACTORS FOR DIFFERENT MODES r

Cs is calculated by taking the mass density ρ and the Young’s
modulus E into account. With the analytical model, the de-
formation magnitude of the analyzed oscillation mode r is
estimated on the outer radius of the stator Ra. For this, the
static and dynamic deformation factors need to be calculated
for an adequate cylinder ring. Since r = 0 results in pure tensile
stress, the static deformation is calculated to

Y0,stat =
R · N
E · h · σ(f, r = 0) (5)

with the natural yoke radius N , the height of the yoke h, and
the inner radius of the stator R. The static deformation for mode
number r ≥ 2 is estimated with

Yr,stat =
R · N
E · h · σ

i2(r2 − 1)2
, for r ≥ 2 (6)

with

i =
(

1
2
√

3

)
·
(

h

N

)
. (7)

The static factor as a ratio of Yr,stat/Y0,stat reads

ηr,stat =
12

(r2 − 1)2
·
(

N

h

)2

, for r ≥ 2. (8)

Bending forces are generated by r = 1. In this special case, the
corresponding static factor reads

η1,stat =
4
3

h · lFe

N · ( d
L

)4 · L
(9)

where lFe is the effective stack length, and L is the dis-
tance between both bearings. For r ≥ 1, the factors previously
given are multiples of the deformation calculated for r = 0.
Table I resumes the calculated static deformation factors for the
studied IM.

The relative sensitivity of the structure γ is defined as the
ratio of the force-wave harmonic fr and the eigenfrequency F0.
With this and the bending and longitudinal oscillation frequen-
cies fB

r and fL
r , respectively, the dynamic factor reads

ηr,dyn =
r2 − γ2[

γ2 −
(

fB
r

F0

)2
]
·
[
γ2 −

(
fL

r

F0

)2
] , for r ≥ 2.

(10)

In the special case r = 1, the lowest bending eigenfrequency is
of interest

F ′′
b1 =

1
2π

√
c′′1
m′′ . (11)

Fig. 2. (a) Resulting factor ηstat · ηdyn(r). (b) Resulting factor ηstat ·
ηdyn(r) in analyzed frequency range.

For a machine with the shaft diameter d, the spring constant c′′1
and the adequate mass m′′ read

c′′1 =
3π

4
· E ·

(
d

L

)4

· L. (12)

The adequate mass m′′ is calculated by

m′′ = ρFe ·
{

l
[
(2R)2 − d2

]
+

1
2
· L · d2

}
(13)

with the mass density ρFe of the rotor. The dynamic deforma-
tion factor r = 1 reads

η1,dyn =
1

1 − γ2 ·
(

F0
F ′′

b1

)2 . (14)

Finally, the overall deformation amplitude is calculated by

Yr = ηr,stat · ηr,dynamic · Y0,stat. (15)

Fig. 2(a) shows the resulting behavior of the factor ηstat ·
ηdyn(r). Each mode number r shows a resonance. Due to the
small size of the studied IM (800 W), these resonance frequen-
cies are rather high. For r ≥ 4, they are beyond the human ear’s
hearing ability. Next to this, the modes r ≥ 3 produce rather
small amplification factors throughout the spectrum. For the
analysis of the studied machine, the spectrum is reduced to
fmax = 1200 Hz. Here, the entire range of frequencies shows

Authorized licensed use limited to: RWTH AACHEN. Downloaded on December 11, 2008 at 12:33 from IEEE Xplore.  Restrictions apply.



SCHLENSOK et al.: STRUCTURE-DYNAMIC ANALYSIS OF AN IM DEPENDING ON STATOR–HOUSING COUPLING 755

Fig. 3. Mechanical FE model (exploded view).

constant amplifications for all modes, as shown in Fig. 2(b).
Therefore, the analysis of the deformation is reduced to small
mode numbers r ≤ 10. In case there are even two modes at the
same frequency, the amplification factor decides which of them
is important and negligible.

III. NUMERICAL MODEL

The FE model of the studied IM includes all mechanical parts
of the machine, as shown in Fig. 3. This complicated structure
of the IM does not correspond exactly to the cylindrical an-
alytical model. The simple model consists of the stator with
winding. The numerical model provides the deformation for
all nodes of the FE model. After discretizing, the following
oscillation equation is obtained:

(K + jωC − ω2M) · D = F (16)

where K is the global stiffness matrix, D is the vector of the
node deformation, C is the damping matrix, M is the mass
matrix, and F is the excitation force. The exciting frequency
f is implemented by ω = 2π · f .

In a second step of this paper, the numerical model is
modified by applying the entire machine structure shown in
Fig. 3. In order to compare the results of both the analytical
and numerical models, the analytical model is reapplied for
the housing. For this, the deformation of the stator on the
outer radius Ra is sampled, depending on the number of spiral-
steel springs (Fig. 4). With the deformation samples, the force
excitation of the housing is calculated by applying Hooke’s law

σ = E · ε and ε =
∆l

l
(17)

where l = h is the height of the stator yoke, and ∆l is the value
of the deformation at the location of the spiral-steel spring. The
sampling can either be performed with the FE model or the
analytical model. After sampling, σ is transformed to the space
domain, providing the appearing modes of force excitation
r(σ). Due to the sampling, aliasing appears, depending on
the original mode number. Fig. 5 shows the sampling and
resulting mode numbers for f = 618 Hz exemplarily. The stator
deformation shows a strong mode r = 6. In the case of three

Fig. 4. Sampling of the stator deformation at the location of springs.

Fig. 5. Aliasing effect changing the exciting modes on the housing.

spiral-steel springs, the most significant mode numbers are
r = 0 and 3, respectively.

IV. RESULTS

At first, the results of the analytical and numerical models
without housing are compared. The deformation is analyzed by
separating the modes r. By this, the impact of the mode number
can be studied as well. In resuming the deformation values
for some selected frequencies, Fig. 6 shows that in the case
of two significant modes of the exciting surface-force density,
the lower mode number has a significantly higher impact in
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Fig. 6. Comparison of deformation amplitudes for models without housing.

Fig. 7. Comparison of deformation amplitudes for models with housing.

any case. At f = 844 Hz, for example, the mode numbers
r = 4 and 8 occur, the latter having the higher force magnitude.
Nevertheless, r = 4 reaches the higher deformation amplitude
by a factor of 5.8. It can be stated that, in general, if two
modes appear, the higher mode can be neglected [1]. The only
exception is the case of r = 0, which might produce a lower
deformation than r = 1 and 2. Next to this, Fig. 6 shows a very
good agreement of the analytical and numerical models. Since
the analytical model has been verified by measurements many
times before [1], the numerical model is stated to be reliable.

Finally, the mechanical deformation is simulated for the
machine model with the entire detailed structure (Fig. 3). In
this way, the impact of different stator-to-housing couplings is
analyzed. Three models are studied: two models with three and
six spiral-steel springs, respectively, and one with a shrinked
stator; an equivalent to an infinite number of springs is studied.
Fig. 7 compares the analytical and numerical models with six
springs.

Two effects can be stated. First, the housing increases the
stiffness of the machine as an additional mass, i.e., the height of
the cylinder ring increases (Fig. 1), and it reduces the maximum
deformation. Second, the aliasing effect shown in Fig. 5 results
in smaller and additional mode numbers producing larger de-
formation. Both effects are detected in Fig. 7. For example,
f = 844 Hz shows larger deformation values for the model
with housing and six springs. This is due to the fact that the
original mode number r = 8 is transmitted to r = 1 and 2.
For f = 520 Hz, the maximum deformation at mode r = 2 is
reduced by more than 50%.

Fig. 8 shows the comparison of the three different stator-to-
housing couplings applying the body-sound index LM. It can

Fig. 8. Comparison of different stator-to-housing couplings.

Fig. 9. Deformation of stator at 1462 Hz for a six-pin model.

be stated that for all analyzed frequencies, the shrinked model
results in the lowest deformation and vibration. Therefore, this
variant will produce the lowest noise radiation. The variant with
three springs is the worst and must be avoided.

Large deformation differences can be stated for 1462 Hz
(cf. Fig. 8) regarding the models with three or six pins coupling
the stator to the housing. For this frequency, deformation and
mode results are presented in more detail in the following
section.

Figs. 9 and 10 show the deformation of stator and housing
for the frequency of 1462 Hz for the model with six pins.
A very strong mode 2 deformation can be stated. The same
evaluation is performed for the model with three pins. The
results are shown in Figs. 11 and 12 for the stator and the
housing, respectively. Here, the same force excitation leads to
a dominant mode with r = 1. Additionally, it can be read from
the scale that the maximum deformation amplitude is higher, as
was expected from the results in Fig. 8.

Figs. 13 and 14 summarize the deformation modes for the
models with six and three pins, respectively. Here, the dom-
inant mode r = 2 can be seen for the model with six pins.
The model with three pins does not show this mode due to
the aliasing effects; here, the deformation stemming from the
force excitation in the stator is translated almost entirely to a
mode r = 1.
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Fig. 10. Deformation of housing at 1462 Hz for a six-pin model.

Fig. 11. Deformation of stator at 1462 Hz for a three-pin model.

Fig. 12. Deformation of housing at 1462 Hz for a three-pin model.

V. OPTIMIZATION OF THE COUPLING BETWEEN

STATOR AND HOUSING

In the previous section, it has been demonstrated that shrink-
ing results in the lowest deformation amplitudes. Due to man-

Fig. 13. Modes at 1462 Hz for a six-pin model.

Fig. 14. Modes at 1462 Hz for a three-pin model.

ufacturing reasons, the coupling applying spiral-steel springs is
usually preferred. Therefore, a procedure, which determines the
optimum number and distribution of the spiral-steel springs, is
required.

The optimization is performed with regarding the following
assumptions:

1) The housing is approximately cylindrical, and the spiral-
steel springs are located in the inner radius of the housing.

2) The spiral-steel springs transmit the force excitation from
stator to housing at an infinitesimal small (single) spot.

3) The mechanical behavior of the stator is decoupled from
the housing’s.

The objective of this optimization is the minimization of the
sound intensity level Lf for the frequency that generates its
maximum value

Z = min
[
max[LIf

]
]
. (18)

The value of the sound intensity level for each frequency is
defined as

LIf
= 10 · log

If

Isf
(19)

where Isf is the threshold value for the human ear of the sound
intensity for the frequency f . If is the sound intensity generated
by the deformation on the surface of the housing with frequency
f . For locations at a distance d from the surface of the housing,
If can be calculated as

If = k · u2
f · f4

d2
(20)
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where k is a constant, which depends on the radiation charac-
teristics of the machine, and uf is the amplitude of the displace-
ment with frequency f . The deformation of the housing is equal
to the sum of all significant mode numbers of the deformation
amplitude, which is calculated by using the analytical model as
follows:

uf =
rmax∑
r=0

Yr =
rmax∑
r=0

R · N
E · h ηr,stat · ηr,dyn,f · σr,f (21)

where σr,f is the force excitation for mode number r and
frequency f transmitted from the stator to the inner radius of
the housing by the spiral-steel springs.

The force excitation at the inner radius of the housing
for f is

σf (x) =
Nsp∑
i=1

σi,f · δ(x − xi) (22)

where Nsp is the number of spiral-steel springs, and σi,f is
the force excitation in stator in the position of the spring. It
is assumed that it is transmitted without any damping losses
to the housing. δ(x) is the unit impulse function, and xi is the
position along the circumference of each spring. In the case of
a symmetrical distribution, it reads

xi = α + i
2π

Nsp
(23)

where α is the position of the first spring. σf (x) can be
expressed as a Fourier series with the following coefficients:

ar,f =
1
π

Nsp∑
i=1

σi,f · cos(r · xi) (24)

br,f =
1
π

Nsp∑
i=1

σi,f · sin(r · xi) (25)

σr,f =
√

a2
r,f + b2

r,f . (26)

The latter can be used as input data for the calculation of the
deformation of the housing (21).

Once the objective function for the optimization is defined,
three different approaches according to the optimization param-
eters are possible.

1) The spiral-steel springs are distributed symmetrically
at the stator outer radius, and the influence of the lo-
cation of the first spring is neglected (α = 0). In this
case, the only optimization parameter is the number of
springs Nsp, and the only constraints are that the number
of springs should be a natural number and that due to
practical reasons, it has to be between 2 and 20.

Nsp ∈ N (27)

2 ≤Nsp ≤ 20. (28)

In this case, the 1-D optimization can be easily solved by
trying all possibilities.

2) The spiral-steel springs are distributed symmetrically at
the stator outer radius, and the influence of the position

of the first spring α is taken into account. This results in
a mixed optimization with two optimization parameters:
a) the number of spiral-steel springs, with the same con-

straints as in the previous case;
b) the position of the first spring α, with the constraints

α ∈ R (29)

0 ≤ α <
2π

Nsp
. (30)

This mixed 2-D optimization can be solved by us-
ing optimization algorithms such as differential evolu-
tion [8].

3) The spiral-steel springs are allowed to be distributed un-
symmetrically. This results in two types of optimization
parameters:
a) the number of spiral-steel springs, with the known

constraints;
b) the position of each of the springs

xi, i = 1 . . . Nsp. (31)

The constraints applying to each of these variables are

xi ∈ R
+ (32)

xi �= xj , j = 1 . . . i. (33)

The second constraint forbids that two springs are in
the same location.

In this case, the number of optimization parameters de-
pends on the value of one of these parameters (Nsp).
Therefore, it is not possible to directly apply optimization
algorithms. By taking advantage of the fact that Nsp can
only take 19 different values, the optimization of the
locations of the springs can be performed for each value
of Nsp, and the global optimum will be the best of the
local optima.

The third case is the most general one, and its solution is the
global optimum because the possible optima for the first two
cases are only a restriction of the possible optima for the third
case. This means that it is possible that the optimization of the
spring distribution results in a symmetrical distribution such as
is assumed in the first two cases. The optimization effort in the
third case is, of course, also higher.

VI. CONCLUSION

This paper has reviewed the analytical theory of [1] and
verified the introduced numerical structure-dynamic model.
The analysis of the deformational modes shows that small mode
numbers have the strongest impact by far. The coupling of
housing and stator should either apply shrinking or an adequate
number of spiral-steel springs. Moreover, a generalized proce-
dure to optimize this coupling was presented, and the necessary
optimization effort was discussed for different assumptions
about the coupling. Further results of this optimization will be
presented in future works.
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