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The estimation and calculation of the acoustic sound of electric machinery is of high interest. Various approaches have been presented
relying either on analytical or on numerical models. In general, the analytical models are based on the electromagnetic-field theory, and
the results are compared to measurements. Numerical models allow for the separation of different exciting forces stemming from various
effects. In the studied case of an induction machine (IM) with squirrel-cage rotor the three following effects are taken into account in the
analytical model: the fundamental field, saturation, and eccentricity. Nevertheless, the numerical results have to be verified. Hence, they
are compared to the physically based analytical results. The radiated noise depends directly on the surface’s deformation of the machine.
Therefore, the analysis is focused on the structure-dynamic vibrations. The combined analysis presented here, allows for the reduction
of vibrations and noise optimizing the coupling of stator and housing. The studied IM’s housing is mounted with six spiral-steel springs
to the stator. With the presented method the impact of different numbers of pins is analyzed.

Index Terms—Audible noise, deformation, finite-element methods, induction machine (IM), structure dynamics, vibrations.

I. INTRODUCTION

HERE have been several contributions to both the analyt-
Tical [1] and numerical [2], [3] approach of estimating the
radiated noise of electrical machinery. A comparison as well as
a combination of both methods allows for more reliable predic-
tions and faster improvements of the machine’s structure in the
sense of a quiet machine.

In this paper an induction machine (IM) with a squirrel-cage
rotor is studied by means of analytical and numerical methods.
At first the applied models are introduced. In general, the struc-
ture of an IM is not purely cylindrical as the analytical models
of [1] assume. Therefore, an add-on of the analytical model is
presented. For comparison reasons different numerical finite-el-
ement (FE) models are introduced in a second step. Finally, the
obtained results of both models are presented and analyzed.

II. ANALYTICAL MODEL

The analytical model [1] is based on the analysis of the radial
force-waves F},qia) resulting from the radial component of the
air-gap flux-density B,, depending on space x and time ¢

B2(x,t)

Fradial(x-/t) = W (1)

with /19 being the magnetic field constant. B2 (x, t) results from
the fundamental and harmonic field of the stator interacting with
the induced fundamental and harmonic field of the rotor. Three
major effects are considered in the analytical model: the funda-
mental air-gap field, the saturation of the lamination, and static
and dynamic eccentricity. Each harmonic, i.e., each exciting
force-wave frequency, results in oscillating space modes along
the circumference of the stator at the air gap. The mode num-
bers r depend on the origin of the interacting field components
of stator and rotor.
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Fig. 1. Simplified analytical model of IM with teeth.

These force waves excite the structure of the machine, in par-
ticular stator and housing. The analytical model simplifies the
machine’s structure to a cylinder ring as Fig. 1 describes. In
order to include the effect of slotting, the cylinder-ring model is
modified taking the teeth into account introducing the adjusting
factor

yoke weight

= . 2
tooth weight + yoke weight @

The weight of yoke and teeth is the equivalent to the corre-
sponding cross sections. With A the eigenfrequency reads
C
Fp=——" .
"o N.VA

C; is calculated taking the mass density p and Young’s modulus
E into account

3

Cs =

E
= @
p

With the analytical model the deformation magnitude of the
analyzed oscillation mode r is estimated on the outer radius of
the stator R,, . For this, the static and dynamic deformation factor
is calculated for an adequate cylinder ring. Since » = 0 results
in pure tensile stress the static deformation is calculated to

R-N

YO,stat = T I

=g ofr=0) 5)
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TABLE 1
STATIC DEFORMATION FACTORS FOR DIFFERENT MODES r

P Lol | 2| 5] 4] 5|6
rstar | 10 | 5964 | 357 | 50 [ 14 | 06 | 03

with the natural yoke radius [V, the height of the yoke A, and the
inner radius of the stator R (see Fig. 1). The static deformation
for mode number r > 2 is estimated with
R-N o

E-h 2(r2—1)2

Yr,stat = forr > 2

© 1 h
= <ﬁ) | (ﬁ) ' @

The static factor as ratio of (Y} stat)/ (Y0 stat) reads

12 NY)®

Tr,stat =

Bending forces are generated by r = 1. In this special case the
corresponding static factor is calculated by
4 h - lFe

Mestat = 5 4 _ 9)
IN-() L

where [, is the effective stack length and L the distance be-

tween both bearings. For r > 1 the factors given above are mul-

tiples of the deformation calculated for » = 0. Table I resumes

the static deformation factors for the studied IM.

The relative sensitivity of the structure y is defined as the ratio
of the force-wave harmonic f;. and the eigenfrequency Fy. With
this and the bending and longitudinal oscillation frequencies f.2
and fl respectively, the dynamic factor reads

72— A2

- T )]

forr > 2.

Tr,dynamic =

(10)

In the special case » = 1, the lowest bending eigenfrequency is
of interest

/1
1" 1 €1

L (11)

bl 2V m

For a machine with the shaft diameter d the spring constant ¢

reads
3 d\*
The adequate mass m” is calculated by
1
m' = ppe - 10 - {l[(ZR)2 —d* + 7L d2} (13)

with the mass density pr. = 7.8 (kg)/(m?) of the rotor. Taking
F}} into consideration the dynamic deformation factor reads

1
1—72-(F0 )2'
FII

bl

m= (14)
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Fig. 2. Resulting factor 9ssat - Mayn (7).

Finally, the overall deformation magnitude is calculated by

Y, = Tr,stat * Tr,dynamic * YO,stat~ (15)

Fig. 2 shows the resulting behavior of the factor ns¢at - 7ayn (7)
for the studied IM. Each mode number r shows a resonance.
Due to the small size of the regarded IM (800 W) these reso-
nance frequencies are at high values. For » > 4 they are be-
yond the human ear’s hearing ability. Next to this, the modes
r > 3 produce small amplification factors throughout the spec-
trum. For the analysis of the studied machine, the spectrum is
reduced to fiax = 2000 Hz due to the application. Here, the
modes r show approximately constant amplification factors for
all frequencies. Therefore, the analysis of the deformation is re-
duced to small mode numbers r < 10. In case there are even
two modes at the same frequency, the amplification factor de-
cides, which of them is significant and which is negligible.

III. NUMERICAL MODEL

The finite-element model of the studied IM includes all me-
chanical parts of the machine (Fig. 3). The complex and detailed
modelled structure of the IM does not correspond exactly to the
analytical model introduced above (Fig. 1). Therefore, a more
general and cylindrical model of the IM is applied first. By this,
the numerical and analytical results can be compared and the
models are verified. The simple model consists of the stator with
winding and housing caps not considering the housing and the
spiral-steel springs.

The numerical model provides the deformation for all nodes
of the FE model. After discretization, the following oscillation
equation is obtained [4]:

K -D+C-D+M-D=F. (16)
K is the global stiffness matrix, D the vector of the total node
displacement, C' the damping matrix, M the mass matrix, and
F' the excitation force. By means of harmonic analysis, with
(d)/(dt) = jw and (d?)/(dt?) = —w? (16) becomes

(K + jwC —w?M)-D = F. (17)
The displacement of each single node included in D is defined
by its displacement vector

g:(uvw)T. (18)
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Fig. 3. Mechanical FE model (exploded view).

A body’s strain € may be interpreted as the gradient of u

- O -
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with the shear . Neglecting initial strain and tension the corre-
lation between strain e and tension ¢ is given by
Q:E'EZ(UI Oy Oz Tey Tyz Tz )T (20)
where H is Hooke’s matrix and 7 the shear stress. The entries
of H are defined by Young’s modulus £ and Poisson’s ratio

v of the corresponding material. For the case of isotropic and
homogenous bodies, H reads

H= E(l1-v)
(1+v)(1—2v)
— o= 0 0 0
= = 1 0 0 0
1-2v . (21
0 0 0 & 0 0 @D
1—2v
0 0 0 0 2 0
1—2v
00 0 0 0 2uud

IV. MODEL ADAPTION

In a next step, the simple numerical model is replaced, ap-
plying the entire machine as shown in Fig. 3. In order to com-
pare the results of both the analytical and numerical model, the
analytical from Fig. 1 is reapplied for the housing considering
the housing’s dimensions. For this, the deformation of the stator
on the outer radius R, is sampled, depending on the number
of spiral-steel springs (Fig. 4). The sampling can either be per-
formed with the FE model or the analytical model. With the de-
formation samples the force excitation of the housing is calcu-
lated using Hooke’s law in scalar form

c=F-¢ (22)
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Fig. 5. Aliasing effect changing the exciting modes on the housing.

[ = h is the height of the stator yoke and Al the magnitude of
the deformation at the location of the spiral-steel spring.

After sampling, o is transformed to the space domain pro-
viding the resulting modes of force excitation r(¢). Due to the
sampling, aliasing appears [5], depending on the original mode
number. Fig. 5 shows the sampling and resulting mode numbers
for f = 618 Hz exemplarily. The stator deformation shows a
strong sixth mode. For three spiral-steel springs, the most sig-
nificant mode numbers are » = 0 and 3.

V. RESULTS

At first, the results of the analytical and numerical models
without housing are compared (simple models). The deforma-
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Fig. 6. Comparison of deformation magnitudes for models without housing.
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Fig. 7. Comparison of deformation magnitudes for models with housing.

tion modes r are analyzed seperately. By this, the impact of the
mode number can be studied as well. Resuming the deforma-
tion values for some selected frequencies, Fig. 6 shows, that in
the case of two modes with small mode numbers (r < 10) of
the exciting surface-force density the lower mode number has a
significantly higher impact in any case. At f = 844 Hz for ex-
ample, the mode numbers = 4 and 8 occur. The latter having
the higher force magnitude. Nevertheless, » = 4 reaches the
higher deformation magnitude by a factor of 5.8. In general, if
two modes appear the higher can be neglected. The only excep-
tion is the case of r = 0, which might produce lower deforma-
tion than » = 1 and 2. Next to this, Fig. 6 also states the very
good accordance of the analytical and numerical models. Since
the analytical model has been verified in general [1] the numer-
ical model is stated to be reliable, providing good results.

Finally, the deformation is calculated for the machine model
with the entire structure (Fig. 3) and applying the method
described before (Fig. 4). In doing so, the impact of different
stator-to-housing couplings is analyzed. Three models are
studied: a model each with three and six spiral-steel springs
and one with a shrinked stator which is equivalent to an infi-
nite number of springs. Fig. 7 resumes the comparison of the
analytical and numerical models with six springs.

Two effects can be stated. The first is that the housing in-
creasing the stiffness of the machine as an additional mass, i.e.,
the height of the cylinder ring increases (Fig. 1), reduces the
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Fig. 8. Comparison of different stator-to-housing couplings.

maximal deformation values. On the other hand, the aliasing
(Fig. 5) results in smaller and additional mode numbers pro-
ducing higher deformation. Both effects are detected in Fig. 7.
For example f = 844 Hz shows higher deformation values for
the model with housing and six springs. This is due to the fact
that the original mode number r» = 8 is transmitted to 7 = 1 and
2. For f = 520 Hz the maximal deformation reached at mode
r = 2 is reduced by more than 50%.

Fig. 8 shows the comparison of the three different stator-to-
housing couplings applying the body-sound index L. It can be
stated that for all analyzed frequencies the shrinked model re-
sults in lowest deformation and vibration. Therefore, this variant
will produce the lowest noise radiation. The variant with three
springs is worst and should be discarded.

VI. CONCLUSION

The presented paper resumes the analytical theory of [1] and
verifies the introduced numerical structure-dynamic model. The
analysis of the deformational modes shows that small mode
numbers have the strongest impact by far. The obtained results
show the great impact of the type of stator-to-housing coupling
to the noise radiation of electrical machines. In the case of a well
designed IM by means of electromagnetic behavior, an awkward
coupling results in unacceptable noise radiation. For the studied
IM it is suggested to either shrink the housing or use an adequate
number of springs for mounting.
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