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Abstract— This paper describes the design of a state controller
for an electromagnetic elevator guiding system. One challenge of
this design is the over-determination of the mechanical system
due to its high number of adjustment variables. Force decoupling,
the transformation of local and global quantities, and simulation
results of the entire system are presented in this paper.

I. INTRODUCTION

Conventional elevators consist of an elevator car in a shaft
operated by a rope, which is mounted on a traction sheave. The
mechanical guiding of such elevators is well-known. Usually,
slideways or roller guides are used.

However, conventional guides show several disadvantages
when compared to a contactless solution. The higher speed,
required for an efficient passenger transportation in high-rise
buildings yields a faster deterioration. Conventional guides
require lubricants and a regular maintenance. Further benefits
of contactless guides are the higher comfort obtained by
audible noise reduction and a controllable guiding stiffness.

II. DEGREES OF FREEDOM

The elevator car is assumed to be a rigid body. It is fixed in
one degree of freedom (DOF) by its propulsion device, a rope
for example. This is the DOF in vertical z direction. The other
five DOF are the translatory movements in x and y direction
and the rotary movements α, β, and γ around the axes of a
Cartesian coordinate system located at the gravity centre of
the elevator car. These five DOF have to be controlled by
electromagnetic fields.

III. GUIDING TOPOLOGY

A. Actuators
An important component of the guideway is the so called

guiding shoe, which transmits disturbance forces from the
elevator car to the guide rail. As aforementioned, conventional
guiding shoes are constructed using rollers or slideways.

The electromagnetic alternative presented is the three-armed
actuator (TAA) [1]. The TAA is an electromagnetic actuator
able to excite three independent pulling forces. This is a
significant improvement with respect to conventional u-shaped
actuators [2], which generate a pulling force in one direction

Fig. 1. TAA on a guide rail.

Fig. 2. Superposed fluxes in a TAA’s cross-section.

only. Therefore, one TAA replaces three u-actuators. A further
actuator is the magnet module presented in [3], which controls
one complete DOF, i.e. producing a force in one direction
(positive and negative). Nevertheless, the TAA controls one
and a half DOF. Therewith, two TAAs substitute three magnet
modules.

Fig. 1 shows the schematic of a TAA. It consists of a
three-armed iron yoke, mounted with permanent magnets on
the outer pole surfaces, and coils around the lateral arms.
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Fig. 3. Magnetic equivalent circuit of the TAA.

The operation of this actuator is based on the superposition
of a permanent magnet flux ΦPM with electrically excited
fluxes ΦEl1 and ΦEl2. The cross-section and the fluxes in
the actuator are presented in Fig. 2. The analytical calculation
of the actuator’s magnetic fluxes is based on the method of
the magnetic equivalent circuit (MEC), which works analogue
to an electrical equivalent network. At first, sources and
magnetic resistances (reluctances) are determined. As a first
approximation the reluctance of the iron yokes and the guide
rail is neglected due to their high permeability compared
to that of the air gaps. The reluctances of air gap Rδ and
permanent magnet RPM are determined as follows:

Rδ =
δ

µ0A
(1)

and
RPM =

hpmHc

BrA
, (2)

where A is the cross-section of the air gap, µ0 is the per-
meability of the vacuum, Hc is the coercivity and Br is
the remanence of the permanent magnet. δ and hpm are the
permeated heights of air gap and magnet respectively. The
magnetic voltage sources in the MEC are the two permanent
magnets and the two coils. The magnetomotive force (MMF)
of one coil is defined as Θ = w · i and the MMF of one
magnet equals to Hc ·hpm. With this information the resulting
equivalent network of the magnetic circuit can be established
(Fig. 3).

During operation, the three guiding forces occur in the air
gaps of the actuator/guide rail system. They depend on the air
gap fluxes Φr, Φl, and Φy . From the MEC, it can be seen
that each force depends on all air gaps and all MMFs. Thus,
a mathematical decoupling of the forces is required to design
an adequate control system.

B. Complete system
The actuators are mounted on opposite edges of roof and

floor of the elevator car, i. e. four TAAs are mounted on one
car. In combination with two guide rails located on opposite
walls of the elevator shaft, the complete guiding system is
formed (Fig. 4). Altogether, the four TAAs produce twelve
pulling forces, organised in pairs along six action lines. Hence,
a total of six forces remain to control the position of the
elevator car, i. e. to control the five degrees of freedom (x, y, α,
β, and γ). These forces are depicted in Fig. 5. On the left hand
side, the twelve individual forces are presented. On the right
hand side the forces acting on the same line are merged into

Fig. 4. Elevator car guided by four TAAs.

Fig. 5. Individual forces (left) and superposed forces (right) of all TAAs.

the six control forces Fx1, Fx2, Fx3, Fx4, Fy1, and Fy2. Due
to the fact that the three forces of each TAA are driven by two
coils, eight linearly independent current variables are available
for adjusting them. Therefore, the guiding of an elevator car
by means of TAAs necessitates a feedback control of an over-
determined system.

C. Linearisation
The implementation of a state space controller requires a

linear time-invariant (lti) system. The pulling force F between
an actuator arm and the guide rail can be approximated by

F =
Φ2

2µ0A
, (3)
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with the magnetic flux Φ calculated with the MEC described
above. The dependence of F on the magnetic flux Φ is
quadratic. Thus, the guiding system is non-linear. The flux
is given by

Φ = f(Θl,Θr, δx, δy), (4)

with f(...) as a complicated function.
Let us define the air gap vector

δ = (δx1 δy1 δx2 δy2 δx3 δy3 δx4 δy4 )T (5)

and

Θ = (Θr1 Θl1 Θr2 Θl2 Θr3 Θl3 Θr4 Θl4 )T (6)

as two eight component vectors containing the TAA variables.
For the purpose of designing the controller, the expressions of
TAA fluxes and forces in terms of those variables need to be
linearised around a working point (WP). One defines

δ = δ0 + ∆δ (7)

Θ = Θ0 + ∆Θ (8)

with all components of Θ equal to zero and all components of
δ equal to 3 mm, which correspond to the car being centred
in the shaft. One has for each TAA the linearised fluxes:

Φik(∆δxk,∆δyk,∆Θlk,∆Θrk) = Φij0

+
[

∂Φ
∂∆δxk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆δxk

+
[

∂Φ
∂∆δyk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆δyk

+
[

∂Φ
∂∆Θlk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆Θlk

+
[

∂Φ
∂∆Θrk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆Θrk,

with j = l ∨ r, i = x ∨ y, and k = 1, ..., 4.

(9)

The control voltage of one coil, which depends on the MMF
and the air gap heights, writes

Ujk(∆Θjk,Φjk) =
R

N
Θjk

+ w
d

dt
Φjk(∆δxk,∆δyk,∆Θlk,∆Θrk),

(10)
with w as the number of winding turns. Merging (9) and (10)
and solving the equation for the MMF yields the differential
current equation.

Fig. 6. Comparison between linearised and original forces.

The linearised force results to
Fik(∆δxk,∆δyk,∆Θlk,∆Θrk) = Fi0

+
[

∂F

∂∆Θlk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆Θlk

+
[

∂F

∂∆Θrk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆Θrk

+
[

∂F

∂∆δxk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆δxk

+
[

∂F

∂∆δyk

]
Θ0rk,Θ0lk,δ0xk,δ0yk

∆δyk.

(11)

Fig. 6 shows the difference between the original and the lin-
earised force values (for Fy) in dependence to every influence
quantity.

IV. THE STATE SPACE MODEL

Elevator cars for passenger transportation have a typical
rated load of 630 Kg. It is supposed to behave like a rigid body.
The dynamic model consists of the mechanical equations of
the elevator car and the electromagnetic equations of the four
actuators. One defines the position vector of the car:

q = (x y α β γ)T . (12)

The force of the actuators depends on the air gap heights,
which have to be calculated from the vehicle position. Recip-
rocally, the forces of the actuators have to be converted into
the elevator car coordinates. Therefore, a mapping between q
and the TAA variables is established.

A. Transformation of local quantities
The components of q are global quantities. However, the

measured quantities on the elevator car are the local air gaps.
Thus, a transformation has to be performed to control q with
the aid of the sensor signals. In Fig. 7, the positioning of
six air gap sensors is presented. It can be seen, that six air
gaps are observed, although there are only five DOF. Here,
for the transformation to the global quantities, only five air



PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES PAPER ID 863

Fig. 7. Observed air gaps.

gap sensor signals are required in principle. However, due to
manufacturing tolerances the calculation of the spatial position
is easier with additional sensors. The vector of the observed
air gaps is

δsensor = (δx1 δy1 δx2 δx3 δy3 δx4)T . (13)

For instance, the translatory movement in x direction is
deduced from the arithmetic average of four air gap heights:

x =
1
4
(∆δx1 −∆δx2 + ∆δx3 −∆δx4). (14)

The signs of opposite actuators are different. The translatory
movement in y direction is calculated similarly, but only two
air gaps are available:

y =
1
2
(∆δy1 + ∆δy3). (15)

The angular positions are deduced from the local quantities
by means of trigonometrical relationships. For α follows

α = arctan(
−∆δy1 + ∆δy3

h
), (16)

where h is the vertical distance between two TAAs. By use
of the small-angle approximation follows

α =
−∆δy1 + ∆δy3

h
. (17)

This approximation is valid, since the maximum value of the
tilt angle is α = 0.17 ◦, when the TAA hits upon the guide
rail. The determination of β and γ occurs similarly. Finally,
the transformation to global quantities writes

q = T · δsensor, (18)

where T is the transformation matrix

T =

26664
1/4 0 −1/4 1/4 0 −1/4
0 1/2 0 0 1/2 0
0 −1/h 0 0 1/h 0

1/2h 0 −1/2h −1/2h 0 1/2h
−1/2b 0 −1/2b −1/2b 0 −1/2b

37775 , (19)

with b as the horizontal distance between two TAAs.

B. Force transformation
As aforementioned, the elevator car is assumed to behave

like a rigid body. M is the symmetrical mass matrix, which
contains the mass m and the moments of inertia Ix, Iy , Iz of
the elevator car:

M =


m 0 0 0 0
0 m 0 0 0
0 0 Ix 0 0
0 0 0 Iy 0
0 0 0 0 Iz

 . (20)

Due to the small angular velocities and due to the fact that
there is no physical contact between guide rail and elevator car,
the bearing’s damping and the Coriolis forces are neglected.
The equation system reduces to

Mq̈(t) = fext(t), (21)

with the vector of external forces fext(t) acting on the elevator
car.

To interact with the equation of motion, the local forces of
the TAAs have also be transformed to the vector of the global
forces

F = TF · flocal, (22)

where flocal is the vector of the six control forces, presented
in Fig. 5. TF is the force transformation matrix:

TF =

26664
1 0 −1 1 0 −1
0 1 0 0 1 0
0 −h/2 0 0 h/2 0

h/2 0 −h/2 −h/2 0 h/2
−b/2 0 −b/2 −b/2 0 −b/2

37775 . (23)

C. MMF transformation
The eight local MMFs (6) have to be converted to control

the five DOF x, y, α, β, and γ. Therefore, the vector of global
magnetomotive forces

Θ̃ = (Θ̃x Θ̃y Θ̃α Θ̃β Θ̃γ)T (24)

is introduced. These global MMFs are no physical quantities
but decoupled control variables for the adjustment of the global
forces F̃x, F̃y and of the global torques M̃α, M̃β , M̃γ . A
symbolic description of the functionality of the global MMFs
is displayed in Fig. 8. With the 5× 8 transformation matrix
TΘ the local variables are converted to the global variables:

Θ̃ = TΘ ·Θ, (25)

Fig. 8. Global magnetomotive forces.
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Fig. 9. Pole-zero plot of the uncontrolled DOF x.

with

TΘ =
1
8

26664
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 −1 1 −1 1

37775 . (26)

Each global MMF controls the DOF indicated respectively.
With this, the coupling of the forces with all local MMFs is
abolished.

One problem of this procedure is the loss of information
during the transformation, since the number of adjustment
possibilities to achieve one global state with eight local vari-
ables is infinite. Thus, an inverse transformation is impossible,
but essential for controlling the real magnetomotive forces.
Therefore, three global variables with auxiliary information
are introduced: Θ̃h1, Θ̃h2, and Θ̃h3. In this variables additional
state information is stored during transformation and recalled
during the inverse transformation. For the augmented vector
of the global MMF results

Θ̃ = (Θ̃x Θ̃y Θ̃α Θ̃β Θ̃γ Θ̃h1 Θ̃h2 Θ̃h3)T . (27)

This augmented MMF vector is calculated by

Θ̃ = TΘfnl ·Θ. (28)

Therefore, the final transformation matrix TΘfnl for imple-
menting the feedback control is formed:

TΘfnl =
1
8

266666664

1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

377777775
. (29)

D. Forming the state space equation
The forming of the state space equation for x, the first

component of the position vector q is presented in this section.
For the other components the procedure is performed similarly.

Based on the mathematical modelling the system description
in state space is deduced from the differential equations of the
physical coherences. State variables are the spatial position
x, the velocity ẋ, and the global MMF Θ̃x. Additionally, a

state space augmentation is implemented. The integral of the
spatial position

∫
xdt is put into the state vector to avoid a

permanent deviation. After transforming the linearised force
equations (11) and the differential equation of current rise(10)
to global quantities, the state space system is obtained:

x
ẋ
ẍ
˙̃Θx

 =

 0 1 0 0
0 0 1 0
0 − 4

mFδx 0 8
mFΘx

0 0 Θx0 ΘΘ0


︸ ︷︷ ︸

Ax

·


∫

xdt
x
ẋ

Θ̃x

 +

 0
0
0
U0


︸ ︷︷ ︸

Bx

·
(

Ũx

)
. (30)

y = (0 1 0 0)︸ ︷︷ ︸
Cx

·


∫

xdt
x
ẋ

Θ̃x

 . (31)

Here, Fδx, FΘx, Θx0, ΘΘ0, and U0 are linearisation factors.
These two equations are the description of the uncontrolled
system. Ax is the system matrix, Bx the input matrix, and
Cx the output matrix. The feedthrough matrix Dx is chosen
to be zero, since there is no direct feedthrough in a real
system. Here, y is not the DOF y, but the output vector of
the state space system. Fig. 9 shows the pole-zero plot of
the uncontrolled DOF x, which depicts the eigenvalues of the
system. It can be seen, that not all poles are placed in the
negative half-plane. Therewith, the system is unstable.

V. STATE CONTROL

The control method employed is the so called DOF-control
[4]. A benefit of this method compared to a simple air gap
control (i.e. every single air gap height is controlled separately)
is a higher system stability, against the background of large
manufacturing tolerances in high elevator shafts.

A. Controller design
The entire DOF controller is designed with five parallel

single state controllers. As presented in section IV, the system
matrix is formed and with this the state space equation of the
uncontrolled system is established. To stabilise the system,
the poles of system matrix Ax have to be replaced. The
eigenvalues are adjusted by a feedback of the state vector
and a combination with the vector of the input values u.
Therefore, control matrix Kx is introduced. It contains the
control parameters, one for every state variable. The controlled
system is described by the following equations:

ẋ = Ax · x + Bx · u
u = −Kx · x. (32)

Substituting the latter in the former results in

AK = Ax −Bx ·Kx, (33)
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Fig. 10. Pole-zero plot of the controlled DOF x.

with AK as the system matrix of the controlled system.
In a further step, the control parameters are computed using

the Riccati equation design rules [5]. These rules are based on
a minimisation of a squared control quality measure. For the
control parameter optimisation, the method of pole placement
[5] is used. This method is qualified in several publications.
In [6] and [4], the use of this procedure is specified for the
application in magnetic levitation controllers. [7] describes
the pole placement for a 6-DOF vehicle. Other papers ([8]
e.g.) show the implementation of the pole placement for other
purposes. Finally, the pole-zero plot of the controlled system
is obtained. It is presented in Fig. 10.

The controllers of the other four DOF are designed just as
well.

B. Results
The validity of the DOF-control is verified by a dynamic

simulation with matlab/simulink. Several real and extreme load
cases are computed as well as the stiffness of the guiding
system.

Fig. 11 shows the system response to a force impact in
x direction, on a defined position upside the barycentre of
one wall. It can be seen, that only the DOF x and β are
deflected. A couple of force impacts on different positions of
the elevator car’s walls and floor simulate the real load, i.e.
walking and jumping individuals inside. The system response
shows a robust guiding characteristic, even in extreme load
cases.

The stiffness k of a guiding system is a commonly used
comparison criterion. Hereby, quantifiable valuations about
bearings and guidings can be performed, which are indepen-
dent of the load cases. Stiffness k is the reciprocal of the
flexibility. It shows a maximum stiffness of k = 5 N

µm , which
is a reasonable value for magnetic levitated systems.

VI. CONCLUSION

Several real and extreme load cases are computed with the
simulation model. The results show a robust state space con-
troller with a high control quality. The topology of this guiding
system and its advantages are introduced in the beginning. The

Fig. 11. System response of a force impact in x direction.

functionality of the TAA is explained in detail. Thereafter, it is
indicated that the system of four actuators is over-determined.
The complete implementation of the 5 DOF state controller
is illustrated. Step by step, the force decoupling and the
transformation of the local quantities to global variables are
demonstrated. Finally results are presented, which show that
the system functions correctly.

The implementation of this controller to a real system is
projected. An elevator test bench is under construction and the
experimental results are going to be presented in a following
paper.
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