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Topology Optimization of Magnetothermal Systems
Considering Eddy Current as Joule Heat
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This research presents a topology optimization for manipulating the main heat flow in coupled magnetothermal systems. The heat
generated by eddy currents is considered in the design domain assuming an adiabatic boundary. For a practical optimization, the con-
vection condition is considered in the topological process of the thermal field. Topology design sensitivity is derived employing the discrete
system equations combined with the adjoint variable method. As numerical examples, a simple iron and a C-core design heated-up by
eddy currents demonstrate the strength of the proposed approach to solve the coupled problem.

Index Terms—Design sensitivity analysis, eddy current, heat flow, topology optimization.

I. INTRODUCTION

OST researches associated with the optimization of mag-
M netothermal systems have focused on the Joule heat, gen-
erated in coils. However, this can be considered a problem due
to the fact that optimization regarding only solid conduction
does not result in a good design, because eddy current effects
are not neglected in a transient magnetic field. The eddy cur-
rent problem in shape optimization has been studied [1]. Con-
ventional optimal techniques are aimed at the improvement of
current designs. On the other hand, topology optimization fo-
cuses on obtaining an initial conceptual design. The topology
optimization does not require sophisticated initial design and
generates some holes on the domain, which the shape optimum
does not.

The topology optimization of electromagnetic systems has
begun using optimized material distribution (OMD) [2], [3]. As
such, applications to practical systems show the possibility of
realization [4], [5].

The design optimization of thermal systems has been ana-
lytically or numerically studied since the 1950s. Then, in the
1980s shape optimization received a greater amount of atten-
tion. The topology optimization of the thermal systems, how-
ever, is a relatively recent technique and is only being done by
some researchers. In this context, a topology optimization was
presented for a heat conduction problem in order to minimize
the resistance between input and output points [6], and many
researches have been done for coupled problems [7], [8]. How-
ever, most of these are based on electrothermal fields, not mag-
netothermal systems. Thus the optimization regarding the eddy
current problem has never been discussed in great detail. Fur-
thermore, convection study has rarely been considered in the
thermal optimization problem.

In this paper, topology optimization of magnetothermal sys-
tems is presented including eddy currents as the main source of
Joule heat. The adjoint variable topology sensitivity equation is
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derived using the discrete method, and topology optimization
program is developed to deal with eddy currents.

The optimization progresses for maximizing heat transfer
with volume constraint. Furthermore, for numerical examples,
the proposed approach is applied to both, a simple iron design
and a C-core actuator. This method can be extended to design
of power reactor for industrial applications.

II. GOVERNING EQUATIONS

A. Electromagnetic System

A finite element equation of any problem governed by spec-
ified differential equations and the boundary conditions can be
achieved by the variational method [9].

To this extend, the transient magnetic field can be described
using a set of Maxwell’s equations. By introducing a complex
vector potential, A*, such that B = V x A* and eliminating H,
a single governing equation can be expressed as

V X (%V X A*> + jwo A" = J )
where Js, 1 and o are the current density vector, the perme-
ability of material and the electric conductivity, respectively.

To obtain the variational equation, multiplying both sides of

(1) with the virtual vector potential A", and integrating over the
domain yield

/// {v X <1v X A*) +ijA*} CATdQ
L
J /
:///[JS]-Z*dQ forall A" e A* (2)
Q

where A* is the space of admissible vector potential.
After applying boundary conditions, the variational equation
becomes [10], [11]

*

ag(A*, A7) =1g(A7)  forall 4" € A* 3)
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Fig. 1. Body subject to heat transfer.

where

A*,Z*):/// {(VXA*)- Gv X Z*)+jwaA*Z*]dQ
Q
://Q/[JS A0, @

ag(A*, A") is the energy bilinear form, and lg(A") is the load
linear form; functions of permeability ;2 and the system’s solu-
tion A*.

Therefore, a matrix form for the finite element solution is
expressed as

(Kmag +jWMmag){A*} = {JS}' &)

K mag and Mg are magnetic stiffness and magnetic mass ma-
trices, respectively [12].

B. Thermal System

Conduction refers to the energy flow from a high temperature
to a low temperature area. For the heat transfer analysis, we
assume that the material obeys Fourier’s law of heat conduction.

As such, a general equilibrium equation in the steady state
can be derived from energy balance and Fourier’ law [13]

V. (k-VT)=—¢ (6)

where k, T and ¢ are the thermal conductivity, the temper-
ature and the internal heat generation rate per unit volume,
respectively.

By using the Galerkin’s method, (6) becomes

kN

where w is an approximation function.
And integrating parts of (7) yields

///(k;-Vw-VT)—w~qb]dQ—///w~kg—Z;dF:0. ®)
Q T

Natural boundary condition in Fig. 1 is expressed by

oT
f=k— T-T,
q kan + he( b) €))

(k-VT)+¢"]d2=0 (7)

where qf , h¢ and T, are the external heat flux, the convec-
tion coefficient and the known environmental temperature,
respectively.
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By applying (9), the surface integral term of (8) becomes

///“f’“—dF /é/lwqfdr_'//s/gth(T —T,)dl. (10)

The final form of the variational equation is

aQ(T,w)://Q/(k-Vw~VT)dQ+/l{w-hc-TdF
w):/l[w-qfdwr/gw.hc-ndr
-i—/]/w-qbdQ.

Q

(1)

The matrix form for the finite element thermal field can sub-
sequently be expressed by

[Ka{T} = {Q}-

Ky, is the finite element thermal stiffness matrix, 7" is the tem-
perature vector and () is the main heat vector classified into the
Joule heat, generated by the coil and the eddy current, and the
heat flowing into or out of the domain.

12)

III. DESIGN SENSITIVITY EQUATION

The topology optimization is considered as a heavy compu-
tation problem since it deals with a large number of finite ele-
ments in the design domain. The adjoint variable method (AVM)
is probably the unique alternative to calculate the sensitivities
[11].

Consider a measure of the thermal performance as

$ =9 (T,T(b))

where b is a vector of the design variables.
Taking derivatives of (13) with respect to the design variable
yields

13)

Q o

W _00 1 [ab 9 (14)

- K1) .
db ob ( th ):|
Ar is a vector of the adjoint variable for thermal systems, and
a tilde (~) indicates a variable that is to be held constant for
partial differentiation.

The corresponding adjoint equation to (14) is written as

o r
Kiphr = | = 15
thAT [ 7 } (15)

Note that while performing the thermal adjoint equation, the
convection coefficient is kept, and 75 is set to 0.

The heat, (2, contains the Joule heat generated by the applied
current in the coil and the eddy current in the body, both of which
are associated with the magnetic system. Since the design do-
main is iron material in the optimization, the final design sensi-
tivity equation is obtained by introducing (5)

dd} _ 61/) T an anonv acgeddy 0
b ~ b +AT[ o ot e g D)
DY 9 N
T S * . *
AT [ S (KagA") — 0 (Minag A )]. (16)
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TABLE I
QUADRILATERAL ELEMENT AND MATERIAL INTERPOLATION CRITERIA
Heat Flow b=1 b=0

s
- Conduction q, =—kVT max 0
7 \Js
Convection g, =h A (T-T,) 0 max

“qs

Qf, Qconv and Qcqqy are the heat flows interacting with the
domain, occurring by convection and by eddy current effects.
A4 is a vector of the adjoint variable of the magnetic system
which is calculated by an adjoint equation

T
aQeddy :| AT

7)

(Kmag +jWMmag))\A = |: IA*

The material interpolation method defines artificial materials
such as permeability and electric conductivity for the magnetic
domain, and thermal conductivity for the thermal field. In ad-
dition, the convection coefficient at the boundary should be
considered while the topology commits any hole in the design
domain. All components have to be composed by a function of a
polynomial of degree p defining the material density, and b to re-
move the intermediate material density in the optimization result.
This yields the modified equivalent material coefficients [14]

p= o+ (popir — po)b” (18)
o =b" Ginitial (19)
k = b" kinitial (20)
hc = hc.initial (1 - bl/pg) (21)

where subscript “initial” indicates the value prior to the
optimization.

Table I shows the quadrilateral element used in finite element
(FE) model, and a criteria of the material interpolation for the
conduction and the convection. As can be seen, if density of
the material properties is 1, the conduction entirely occurs and
the convection term disappears on 4 edges. Otherwise, the phe-
nomena are in reverse order.

IV. ToPOLOGY OPTIMIZATION

The topology optimization aims to search for an optimum
material distribution that maximizes or minimizes an objective
function while satisfying given constraints.

In this paper, the objective is to maximize the nodal temper-
ature on the metal domain, where the eddy current generates
the main Joule heat. Maximizing the nodal temperature tends to
minimize the thermal resistance toward the target nodal points.
This implies that the direction of the main heat flow is inten-
tionally manipulated on the domain in such a way that the op-
timal design efficiently controls the most heat to be radiated to
the outside. And the volume is a constraint used to limit the op-
timal design. Hence, the topology optimization problem takes
the form

maximize

1 n
- Z Nodal Temp;
n
i=1
I, bAtd©

1<0
Vg x Vo -

subject to g = (22)
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Fig. 2. Flow chart.

Target Node

Fig. 4. Magnetic flux line and temperature contour. (a) Original design; (b)
optimal design.

boundedto 0 < b < 1forall b € .

A is the area, ¢ is the thickness, and V, Vj are the given
volume by designer and the initial volume, respectively.

The In-House Code used in this paper has been developed as
a controller based on C++ language. The controller calls an ana-
lyzer (ANSYS) to evaluate the objective function and iteratively
computes the design sensitivity. The design optimization tools
(DOT) are used as an optimizer. Fig. 2 outlines the topology op-
timization procedure.

V. NUMERICAL EXAMPLE

The first numerical model, a particular section indicated in
Fig. 3, consists of three materials including coil, air and iron
surface. The optimization is performed to find an iron shape
satisfying the problem setup. The volume constraint is set to
50% of the initial one (V, = 0.5).

Once the current density with frequency 60 [Hz] is applied in
the coil, eddy currents occur inside the iron material. Note that
the heat generated by eddy currents is considered in the design
domain assuming an adiabatic boundary.

The design domain is optimized to increase the temperature
of a target node shown in Fig. 3. Fig. 4 illustrates the magnetic
flux line of the analyzed section and temperature contour of the
iron domain. The optimal design is determined by eliminating
the iron elements holding low density.

The strength of the optimal design is illustrated by comparing
the results of the original analysis with the reanalysis of optimal
design in Table II.
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TABLE II
COMPARISON BETWEEN INITIAL AND OPTIMAL DESIGN

Initial Design Optimal Design
Average of
Nodal Temperatures [%] 100 17517
Heat Transfer Rate per Volume [%] 100 258.94
Magnetic Energy of
Iron Domain [%] 100 504.08
Volume [%] 100 41.67

_—— Target Node~__

L I

¥ Target Node

Fig. 5. C-core model with target nodes and optimal design.

(a) (b)

Fig. 6. Plot of magnetic flux line. (a) Original design; (b) optimal design.

(a) (b)

Fig. 7. Plot of temperature contour. (a) Original design; (b) optimal design.

TABLE III
COMPARISON BETWEEN INITIAL AND OPTIMAL DESIGN

Initial Design Optimal Design
Average of
Nodal Temperatures [%] 100 16135
Heat Transfer Rate per Volume [%)] 100 121.34
Magnetic Energy of
Core Domain [%] 100 101.95
Volume [%] 100 70.56

For a global approach, an additional C-core design is imple-
mented with 4 target nodal points. Each target location is se-
lected at vertices of the core domain for such a novel design re-
garding the thermal field. The 70% of the initial volume is given
as a constraint (V, = 0.7). Fig. 5 illustrates the design model
and optimized topologies with gray level.

In order to maximize the average of target nodal temperatures,
the thermal resistance is minimized at some regions from the el-
ements of the generated heat to the target spots. Since the heat
resistance by the convection term is much higher than the con-
duction, the conductive material keeps being high density-level
around the target spots.

Figs. 6 and 7 present the plot of magnetic flux line and temper-
ature contours, respectively, for comparison between the orig-
inal and the optimal designs. Table III verifies the performance
comparison.
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An interesting effect can be observed from Tables II and III.
Even though the objective is to maximize the nodal temperature,
the optimal design results in maintaining the magnetic energy
in comparison with original one. Because the heat source is the
eddy current induced by the magnetic field, it turns out that mag-
netic flux is at least preserved on the process of the optimiza-
tion. And the temperature distribution is much more sensitive
than the magnetic characteristics. From the optimal topologies
shown, the optimization regarding target nodes do not generate
checkerboard problem.

VI. CONCLUSION

In this paper, the topology optimization is performed re-
garding eddy currents as the Joule heat. For magnetothermal
systems, a topology design sensitivity is derived by employing
the discrete system equations combined with the adjoint vari-
able method. By using the OMD, the material interpolation
functions are defined for permeability, electric conductivity,
thermal conductivity and convection coefficient. The two
design models (simple iron and C-core design) heated-up by
eddy currents demonstrated the effectiveness of the proposed
method. The optimal designs do not only result in an increase
of the heat transfer rate per volume, but also maintaining the
magnetic energy.
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