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Reinterpretation of theNodal Force Method within
discrete geometric approaches

F. Henrotte, R. Specogna, F. Trevisan

Abstract— We propose a geometric reinterpretation of the
Nodal Force Method in the framework of a pair of discrete
formulations for magnetostatics on complementary meshes.

Index Terms— Discrete approaches, Forces, Magnetostatics.

I. I NTRODUCTION

The force distribution on a body can be computed by means
of the so called “Nodal Force Method” (NFM), proposed by
different Authors [1], [2] in the framework of finite elements.
The aim of this paper is provide a geometric reinterpretation
of the NFM, when used within discrete geometric approaches.
We will focus on magnetostatics, but the same interpretation
holds for eddy-currents problems. We will consider a pair of
discrete formulations1 on complementary tetrahedral meshes
to solve the magnetostatic problem, both in terms of the
circulation of the magnetic vector potential and in terms of
a scalar magnetic potential and the circulation of the electric
vector potential, where needed. In both the cases, we will
express the force acting on a noden of a tetrahedronv in
terms of the geometric entities of the mesh and of the global
electromagnetic quantities like the fluxes of the inductionfield
or the circulations of the magnetic field.

II. D ISCRETE FORMULATIONS FOR MAGNETOSTATICS

The domain of interestD consists of a source regionDs,
where known currents are present, and of a regionDm, where
magnetic materials are present; the complement ofDs and
Dm in D is the insulating regionDa. We introduce inD

a pair of interlocked cell complexes. One complex is made
of simplexes (the 3-cells are tetrahedra), while the other is
obtained from it, according to the barycentric subdivision. We
denote byK the primal complex (whose cells are endowed
with inner orientation) and byK̃ the dual complex (whose
cells are endowed withouter orientation) [3]. As the same
geometric element of a complex can be thought with two
complementary orientations, we may construct the pair of
meshesM′ = (Ks, K̃) andM′′ = (K, K̃s), where the suffix
”s” indicates the simplicial complex. We will denote byM
eitherM′ or M′′. In addition, the interconnections between
thep-cells of the primal complex of a meshM are described
by means of the usual incidence matrices. In particular for

F. Henrotte is with the Institute of Electrical Machines, RWTH Aachen
University, Schinkelstr. 4, D-52056 Aachen, Germany, R. Specogna and
F. Trevisan are with the Dep. of Ingegneria Elettrica, Gestionale e Mec-
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1These formulations are part of the GAME (Geometric Approachfor
Maxwell Equations) code developed by R. Specogna and F. Trevisan.

Ks, we denote byG the incidence matrix between edges and
nodes,C between faces and edges andD between volumes
and faces; similarly for the dual complex̃Ks we write G̃, C̃

andD̃ respectively.
Next, we consider the integrals of the field quantities with

respect to thep-cells of meshM, yielding the Degrees of
Freedom (DoF) arrays whose elements are indexed over the
correspondingp-cells. Therefore, we obtain thatΦ is the
DoF-array of magnetic induction fluxes associated with primal
facesf , F is the DoF-array of m.m.f.s associated with dual
edges̃e, I is the DoF-array of electric currents associated with
dual facesf̃ . In the following, we briefly recall two possible
discrete formulations (in the full paper we will give all the
details).

A. Formulation in M′

In D we consider the meshM′. We search for arrayA
of circulationsA of the magnetic vector potential along the
primal edges ofKs such thatΦ = CA and

C
T
νCA = I (1)

hold; I has non null entries for the dual faces ofK̃ in Ds.
Matrix ν (dim(ν) = Nf , Nf being the number of faces in
Ks) is the reluctivity matrix such thatF = ν Φ. This matrix
can be computed according to the following approaches, [4],
[5], under the hypothesis of element wise uniform fields.

B. Formulation in M′′

In D we consider the meshM′′. We search for arrayΩ
of the magnetic scalar potentialsΩ associated with the dual
nodes ofK̃s such thatF = G̃Ω and

G̃
T
µG̃Ω = −G̃

T
µT (2)

hold, whereT is the array of circulations of the electric vector
potentialT along dual edges; it has non null entries for the
edges ofK̃s in Ds. Matrix µ (dim(µ) = Nẽ, Nẽ being the
number of edges iñKs) is the permeability matrix such that
Φ = µF, [6]; elementwise uniform fields are again assumed.

III. T HE NODAL FORCE METHOD

We indicate with L a layer of tetrahedra enclosing the
magnetic domainDm, such thatL ⊂ Da and each tetrahedron
v ∈ L may have 1, 2 or 3 nodes on∂Dm; we denote byn
one of these nodes and withN the set they form. Then the
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magnetic forceFn associated with noden of v can be written
as [2], [1]

Fn = −

∫
v

σm · ∇γ, (3)

whereσm = (HB − 1
2H · B I) is the Maxwell stress tensor

in terms of the magnetic induction fieldB and the magnetic
field H in the vacuum,I is the identity tensor. Finallyγ is an
arbitrary function (we need at least to compute the gradientof
it) with support inL; it is 1 on∂Dm and 0 on∂L−∂Dm. We
will concentrate on the single tetrahedronv, since he resultant
forceFDm

acting on the body, is the sum of the contributions
Fn, with n ∈ N , from all v ∈ L. It is usual to expressγ inside
v, as the sum of the Whitney nodal functionswn associated
with n ∈ N . Then, it is easy to show [5] that in the primal
complexKs (or equivalently in the complex̃Ks)

∇wn = −
1

3 vol(v)
Dv,nfn, (4)

wherefn is the area vector whose magnitude equals the area of
the facefn (opposite to noden) and that is perpendicular tofn

and pointing in a way congruent (according to the right handed
screw rule) with the orientation of that face. EntryDv,n is the
incidence number between the inner orientations ofv andfn

of Ks (similarly betweenṽ and f̃n of K̃s the incidence is
D̃v,n). Finally vol(v) is the volume of the tetrahedron.

A. Geometric reinterpretation using the formulation in M′

The formulation (1) allows the computation of the fluxes of
the induction field on the four faces ofv. Then, we will show,
that a uniform induction fieldB in v can be obtained from

B =
1

3 vol(v)

3∑
i=1

Ginei DviΦi, (5)

where ei, with i = 1, . . . 3, is the edge vector associated
with edgeei drawn from noden, Φi is the induction flux
associated with facefi having noden as vertex; facefi pairs
with ei . IntegersDvi andGin are incidence numbers between
orientations ofv, fi and ei, n respectively. From it and (4),
will show that (3) can be rewritten as

F′

n = −
ν0

9vol(v)

3∑
i,j=1

DviΦi un
ij DvjΦj , (6)

whereun
ij = Gjnej+

1
6vol(v)GinGjnei ·ej Dvnfn. It should be

noted that the vectorun
ij contains all the geometric information

in terms of the three edgesei drawn from the common node
n and the facefn opposite to it.

B. Geometric reinterpretation using the formulation in M′′

The formulation (2) allows the computation of the m.m.f.s
along the six edges ofv. Then, we will show, that a uniform
magnetic fieldH in v can be expressed as

H =
1

3 vol(v)

3∑
i=1

D̃vi f̃i G̃inFi, (7)

where f̃i, with i = 1, . . . 3, is the face vector associated
with dual facef̃i having noden as vertex,Fi is the m.m.f.

associated with dual edgẽei drawn from noden; again dual
face f̃i pairs with ẽi. From it and (4), will show that (3) can
be rewritten as

F′′

n =
µ0

9vol(v)

3∑
i,j=1

G̃niFi vn
ij G̃njFj , (8)

where 3vol(v)vn
ij = D̃vn f̃n · D̃vi f̃i D̃vj f̃j − 1

2D̃vi f̃i ·

D̃vj f̃j D̃vn f̃n. Again the vectorvn
ij contains all the geometric

information in terms of the three dual facesf̃i drawn from the
common noden and the facef̃n opposite to it.

IV. N UMERICAL EXPERIMENT AND RESULTS

We computed the resultant force acting on a cylinder (µr =
100) close to a circular coil (400 turns, 1 A per turn); the
geometry is axisymmetric (it is shown in Fig. 1 on the right)
but we solved it as a 3D magnetostatic problem using the
pair of complementary formulations onKs, K̃s having 82012
tetrahedra, 14330 nodes and 96867 edges. We obtainedF ′

z =
9.06 mN , F ′′

z = 9.82 mN for the axial component of the
resultant force from (6) and (8) respectively. For comparison,
a 2D axisymmetric analysis with the ANSYS code computed
9.42 mN , using about 20000 II order quadrilateral elements.
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Fig. 1. On the right: geometry of the test problem. On the left: local force
distribution on the boundary of the magnetic domainDm.
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