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A Theory for Electromagnetic Force Formulas
in Continuous Media

François Henrotte and Kay Hameyer

Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062, Germany

An energy-based theory for electromagnetic forces in continuous media is presented. The aim is to provide a guide and a complete
toolbox for their numerical computation. In an Euclidean space, the electromechanical coupling is shown to be realized by a stress tensor,
in terms of which the classical electromagnetic force formulas can be reinterpreted, unified, and generalized.

Index Terms—Differential geometry, electromagnetic coupling, electromagnetic forces, finite-element methods, torque.

I. INTRODUCTION

I N MODERN computational electromagnetics, one needs
more and more to compute local forces in material exhibiting

saturation, anisotropy, magnetostriction, and hysteresis. The
issue of forces then comes into play entangled with energy
considerations. The theoretical issue has been addressed by
Bossavit [1]–[4]. This paper, however, intends to provide a more
operative formalism, i.e., a set of general rules and formulas that
lead straightfully from the statement of the electromechanical
problem to a practical implementation of a solution method for it.

The existence of such a enduring controversy about the com-
putation of electromagnetic forces and the persistence of so
many uncertainties about their implementation is certainly to
ascribe to the fact that the issue cannot be completely clarified
with the concepts of classical Vector and Tensor analysis. The
mathematical analysis of this problem requires to consider a de-
forming body, and to apply energy conservation rules to it. The
background required to perform such operations is differential
geometry (see, e.g., [5]). Fortunately, the theoretical results can
be reexpressed at the end in terms of vector and tensor fields.
It turns out that the electromechanical and magnetomechanical
couplings can be expressed in terms of a stress tensor. The pro-
cedure to determine that stress tensor is described in this paper.

Finally, it is shown in the last part of this paper that classical
forces formulas and methods that can be found in literature and
are commonly applied in numerical simulations, can be uni-
fied thanks to this coupling stress tensor. They are associated
with different choices of the (possibly virtual) velocity field de-
scribing the deformation of the domain. This is not only a back-
wards confirmation of the proposed theory, but also a firm de-
parture point to advisedly tackle with more complex materials.

II. THEORY

A. Function

One first introduces the notation

(1)
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for a function (or a map). In this exhaustive notation, is the
name of the function, and are the variable and the value of
the function, respectively. Finally, and are
the domain and the codomain of the function. The alternative
notations and can be used if necessary.
All elements of the complete definition (1) are, however, not
always relevant, and shorthand notations are used whenever no
confusion is possible.

B. Differential Forms

Basically, Vector and Tensor analysis distinguish scalar fields
(1 component), vector fields (3 components), and tensor fields (9
components) in 3-D Euclidean spaces. Differential geometry, on
the other hand, distinguishes a much larger set of fields. In par-
ticular, differential forms can be regarded as natural arguments
for -fold integrals, which amounts to say that they are asso-
ciated with a map from the geometrical entities of the domain
(points, curves, surfaces, and volumes) to the real numbers.

On a 3-D domain , there exist four kinds of differential
forms, called -forms, . A 0-form is a scalar func-
tion defined on , i.e., a map from the points of to the real
numbers. Similarly, a 1-form is a map from the curves of
to the real numbers that verifies the additivity rule

(2)

for any curves and in . This linearity condition ensures
that the map identifies one and only one vector field on such
that

(3)

holds for any curve . But the two representations are
nevertheless not exactly equivalent. The representation in terms
of a map (1-form) still makes sense when de domain de-
forms. The number associated with a given curve remains un-
changed even if the curve is deformed. On the other hand, Vector
analysis provides no rule to involve a vector field in the defor-
mation of its domain of definition. This distinction is important
when it comes about the definition of electromagnetic forces.

Similarly to 1-forms, 2-forms are maps from the surfaces in
onto the real numbers and 3-forms are maps from the vol-

umes (subsets) of onto the real numbers. They also both
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TABLE I
DIFFERENTIAL FORMS OF DEGREE 0, 1, 2, AND 3 IN A 3-D SPACE:

ASSOCIATED GEOMETRICAL MAP, PHYSICAL INTERPRETATION,
AND EXAMPLES ENCOUNTERED IN THIS PAPER

verify an additivity rule like (2). Let denote the set of all
-forms defined on . Table I summarizes the different kinds

of differential forms and gives the associated geometrical map,
their physical interpretation and the examples encountered in
this paper and in [6].

C. Co-Moving Time Derivative

Thanks to the concept of -forms, fields can be consistently
defined on deforming domains. In order to establish the way
they vary in time, an Eulerian representation is now adopted, i.e.,
the fields are defined on a subset of an Euclidean space and
the deformation of is described by the velocity field . The
co-moving time derivative is then defined by the property

(4)

where is any -dimensional geometrical subset of and
any -form defined on . The co-moving time derivative

determines how time derivative and integration over space
commute. It allows obtaining the local form (partial differential
equations) of global energy balances on deforming domains.

Differential geometry provides the expressions of the
co-moving time derivatives of -forms

(5)

(6)

(7)

(8)

The definitions of the dot operator and of products like
and are given in the Appendix.

In order to make the link with well-established mathematical
notions, it should be pointed out that , where is
the Lie derivative [5]. One may recognize in (5) and (8) the ma-
terial derivatives encountered in Fluid dynamics. Equations (6)
and (7) could, therefore, be regarded as the material derivatives
of 1- and 2-forms, respectively. But as electromagnetic fields do
not need material support, the name co-moving time derivative
is preferred [5].

III. A WORKED-OUT EXAMPLE

We have so gathered the theoretical elements needed to ana-
lyze the magnetomechanical coupling in a continuous medium.
Let us assume that the magnetic energy density of a magne-
tostrictive material is given by the functional

(9)

where is the induction field and is the strain tensor.
Throughout the paper, the density of a quantity will be de-
noted .

The constitutive relations associated with the energy density
functional are

(10)

with the magnetic field (one assumes there is no hysteresis)
and the magnetostriction stress, which is a symmetrical tensor.
The variation with time of the magnetic energy contained in the
system is

(11)

by (4). Using (8) and the chain rule of derivatives to expand ,
one obtains

with the tensor product . Using now (10) and (7)
to substitute for yields

(12)

where we have also used the fact that is the symmetrical part
of . As explained in more detail in [6], the mechanical work
delivered by magnetic forces is

(13)

The zero co-moving time derivative of in (13) is the pre-
cise mathematical statement of what is commonly formulated
holding the fluxes constant. Substituting (12) in (11), and fac-
torizing , the Maxwell stress tensor of the magnetostrictive
material is obtained

(14)

where is the identity matrix. Note the use of the dyadic (un-
dotted) vector product .

Besides the magnetostriction stress , which is a material
property, one has extra terms in (14) that account for the
so-called form effect. An example of a magnetostrictive energy
functional like (9) is proposed in [7].

IV. COMPUTATION OF ELECTROMAGNETIC FORCES

In the last part of this paper, the implication of the results of
Section III on the definition of electromagnetic forces are re-
viewed. It is shown, in particular, that the classical electromag-
netic force formulas used in finite-element computations can be
derived from (13) by considering different velocity fields .

1) Maxwell Stress: In its most fundamental expression, the
magnetomechanical and electromechanical couplings is the
product of a stress tensor with the gradient of the velocity field,
and not the product of a force density with the velocity field.
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This is due to the fact that the geometry dependent terms in
(5)–(8) involve , but not itself.

2) Energy Density: Each material has its own Maxwell stress
tensor , whose expression is obtained from the energy den-
sity by applying the same procedure as before. For instance,
the Maxwell stress tensor of a material that has at the same time
a magnetic energy density and an electric en-
ergy density , is defined by

(15)

One finds

(16)

Other examples of materials can be found in [8].
3) Force Density: The link between the Maxwell stress

tensor and the electromagnetic force density is found by
integrating (13) by part over . One has

(17)

with by definition and the exterior normal
to . One can see the electromagnetic forces have a volume
component and a surface component .

4) Continuity: At material interfaces, the Maxwell stress
tensor is, in general, discontinuous. The force density is then
defined, in the sense of distributions, as the jump of .
This can be seen by applying (17) material domain by material
domain and summing up all contributions.

5) Sign Convention: It should be noted that the Maxwell
stress tensor is a true mechanical stress, i.e., its work is
delivered by the mechanical energy compartment and received
by the electromagnetic compartment. On the other hand, is
a magnetic force. The work it delivers is withdrawn from the
electromagnetic compartment and received by the mechanical
compartment.

6) Applied Stress: The Maxwell stress tensor can be used
directly as an applied stress in the structural equations and
boundary conditions of the system. One has

(18)

which is easier than coupling through the forces

(19)

since requires a special treatment at material interfaces.
7) Force-Free Region : Applying (17) to a force-free region
, i.e., on , yields

(20)

This shows that the velocity field is arbitrary on the interior
of a force-free region. If the force-free region surrounds a
moving region (Fig. 1), cannot, however, be set to zero
everywhere in . A transition region must be present to
preserve the continuity of , which is different from zero on .

Fig. 1. Typical resultant magnetic force problem, Y is the moving rigid region
(body), Z is the force-free region, X is fixed, and S � Z is the eggshell.

8) Rigid Region : Considering a moving rigid body
(Fig. 1) whose velocity field , (17) gives

(21)

with , where is the Levi–Civita symbol
(see, e.g., [5]). The vectors and being arbitrary and con-
stant on , one may factorize them to define the resultant mag-
netic force

(22)

and the resultant magnetic torque

(23)

acting on the rigid region . The term is zero when is
symmetric.

Equations (22) and (23) show that the resultant force and
the resultant torque acting on a rigid region can both be
evaluated by means of a the surface integral on its boundary

of the Maxwell stress tensor of empty space. This classical
result is known as the Maxwell stress tensor method. Note that
the rigid region needs not be identified with a material body. It
may be larger, provided that the extra domain enclosed is force
free.

9) Eggshell Method: In practice, it is easier to work with
volume integrations which are already implemented in the fi-
nite-element program. In order to avoid the surface integration
in (22) and (23), which requires a specific implementation, one
chooses a domain (Fig. 1) larger than the rigid region

, i.e., enclosing as well a part of a force-free region (gen-
erally air). One defines on a velocity field which describes a
rigid motion of , decays smoothly in , and vanishes on ,
i.e., , where is any smooth function
whose value is 1 on and 0 on . Applying now (20) to the
force-free region yields successively

(24)

by the definition of , (22) and (23). This gives an alternative
way to compute the resultants and , now by means of a
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volume integral, with the Maxwell stress tensor of empty
space. In the particular case of a translation velocity field

, one has

(25)

In practice, the shell region is reduced to a minimum. The
shell can be defined explicitly by the user, like in Fig. 1, and is
then also a user-defined analytic function. In general, it is easier
to have the eggshell automatically defined. A natural choice is
to take one layer of finite elements around the moving region,
i.e., all elements touching the boundary on the outer side.
The function is then simply, on that support, the sum of the
shape functions associated with the nodes of . This alternative
method to compute the resultant force on rigid bodies by means
of a volume integration instead of a surface integration has been
validated in [9] and [10].

10) Arkkio’s Method: The torque in 2-D models of electrical
rotating machines can be calculated with the eggshell method by
considering the rotation velocity field

(26)

in cylindrical coordinates, where and are, respectively,
the outer and inner radius of any cylindrical air region con-
tained in the air gap. The gradient of the velocity field is

(27)

when by (24), the formula of Arkkio [11]

(28)

11) Coulomb’s Method: Coulomb’s formula to compute
nodal electromagnetic forces by the local derivative of the
Jacobian [12], is obtained by identifying with the virtual
velocity of one node and the function with the shape function
of that node, . One obtains

(29)

where the domain of integration can be limited to the support of
the nodal shape function . This allows to define the nodal net
force acting on the node by

(30)

which is identical to the formula proposed in [13]. It can also
be shown to be equivalent to the formulas presented in [14] for
linear materials and in [12] and [15] for nonlinear materials.
Equation (30) is, however, more general, for it does not assume
a particular form of and does not rely on a finite-element
mesh. The nodal shape function is here just used as a convenient
representation of a local deformation. The trick of the derivative
of the jacobian is here accounted for by the co-moving time
derivative.

V. CONCLUSION

We have shown that the electro- and magnetomechanical
couplings are realized by a stress tensor, for which the name
Maxwell stress tensor has been retained. This tensor has a

local meaning. Each material has its own Maxwell stress tensor
and it has been shown how it can be derived from a known
expression of the magnetic and electric energy densities of
the material. The complete mathematical developments of this
theory involve Differential geometry concepts but an operative
Tensor/Vector analysis formalism is obtained by supplementing
the standard theory with a very limited number of new notions
and formulas. Classical force fomulas are unified and general-
ized in this respect.
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