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Abstract— This paper proposes a theoretical definition of the
notion of inductance valid in static and dynamic cases, and
in the presence of motion or magnetic hysteresis. Different
methods to compute inductances with the finite element method
are compared. Their accuracy in function of frequency and
mesh refinement is discussed in detail. Comparison of different
kind of meshes (structured, unstructured) and of different mesh
generators (ANSYS, gmsh) is presented as well.

I. M AGNETIC ENERGY BALANCE

Considering Magnetism from the point of view of energy,
the state variable is the vector potentiala and the magnetic
energy of any systemΩ is a functional

ΨM ≡

∫

Ω

ρΨ
M : curla 7→ R. (1)

From the mathematical point of view, the variation of magnetic
energy can be expressed by the chain rule of derivative as

∂tΨM =

∫

Ω

hr · Lv curla +

∫

Ω

{

Lv ρΨ
M

}

(curla). (2)

where the co-moving time derivativeLv is a time derivative
that accounts for a possible motion or deformation of the
domainΩ [1]. In the absence of motion,v ≡ 0 yieldsLv ≡ ∂t

(See also [2], [3]). In (2),hr ≡ ∂bρΨ
M is the reversible part

(it derives from a potential, which is the magnetic energy
density ρΨ

M ) of the magnetic field, which accounts for the
magnetization phenomenon, i.e. the alignment of microscopic
magnetic moments. The second terms in (2) accounts for
the variation ofΨM when deformingΩ holding a, i.e. the
magnetic fluxes, constant.

From the point of view of Thermodynamics now, the
balance of magnetic energy writes

∂tΨM = Ẇ + Q̇ + ẆM (3)

for arbitrary evolutions of the system, i.e.∀Lv a. The rate of
magnetic work

Ẇ =

∫

Ω

{j + Lv d} · Lv a −

∫

∂Ω

n × h∂ · Lv a (4)

is the power delivered by the work of generalised forces on the
variation of the state variablea. It decomposes into a volume
term for which the generalised force is the total current density
(including displacement currents)j+Lv d, and a surface term
for which the generalised force is the given surface (tangent)
magnetic fieldn×h∂ , and which stands for the effect onΩ of
currents flowing outsideΩ. The dissipation functional writes

Q̇ = −

∫

Ω

hi · curlLv a ≤ 0 (5)

wherehi is the irreversible part of the magnetic field, which
accounts for the local dissipation due to magnetic hysteresis.
Finally, ẆM represents the magnetic energy converted into
mechanical energy, i.e. the power delivered by magnetic
forces.

Identifying both definitions of∂tΨM and factorising the
arbitraryLv a, one obtains Ampere’s lawcurl {hr + hi, } =
j + Lv d as Euler-Lagrange equation whereas the remaining
two terms must sum up to zero separately, which defines the
power delivered by magnetic forces

ẆM =

∫

Ω

{

Lv ρΨ
M

}

(curla). (6)

II. D EFINITION OF INDUCTANCE

An arbitrary system with a conductorC (coil or massive)
carrying a given currentI, is now considered. Whereas the
field magnetic state variable is the vector potentiala, the idea
behind the notion of inductance is to work with a scalar state
variable. This state variable is the fluxϕ embraced by the
conductor. In order to relate the two representations, one needs
a definition ofϕ in function of a, i.e. a mappingϕ : a 7→ R.
For the sake of clarity, the simplest case is first considered.
One assumesd ≡ 0 (no coupling with electric energy),h∂ ≡ 0
(no coupling with external currents),hi ≡ 0 (no hysteresis)
andv ≡ 0, ẆM ≡ 0 (no deformation), so that (3) simplifies
into

∂tΨM =

∫

Ω

j · ∂ta. (7)

The sought relation betweena and ϕ arises from the
banal observation that the current densityj can be written
j = Iw, where the current shape functionw has support
on the conducting regionC ⊂ Ω. Note that this entails no
approximation ifw is allowed to depend on time. If it is now
required that magnetic work is exactly represented, i.e.

∫

Ω

j · ∂ta ≡ I ∂tϕ ⇒ ∂tϕ =

∫

Ω

w · ∂ta, (8)

a mapping between the time derivatives∂tϕ and ∂ta is
obtained. In order to get a mapping betweenϕ and a, one
makes theassumption that the current shape functionw does
not depend on time, so that one has

ϕ(a) =

∫

C

w · a. (9)

The assumption onw is always fulfilled for coils, but it can
also be fulfilled in a more restrictive way, e.g. for a given
frequency in time-harmonic problems, or on a limited time
interval for a linearised model.
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Fig. 1. Geometry and one typical mesh of the coil.

Inductance is defined by identification of magnetic energy.
Two ways of doing this are possible. For a global identifica-
tion, the inductance is defined as the multiplicative factorthat
allows writing

ΨM (curla) =

∫ ϕ(a)

0

L−1x dx ⇒ L−1ϕ = I. (10)

L is in this casea priori a non-linear function of all states
variables of the system, and ofϕ in particular. In some
situations, it is useful to identify the tangential inductance of
the linearised systemL−∂ = ∂2

ϕΨM (ϕ∗) (L−∂∂tϕ = ∂tI),
which is a constant, but valid only in a neighborhood ofϕ∗.

III. M ETHODS

Let C be the coil region depicted at Fig. 1 andΓ be the
locus of the gravity centers all orthogonal cross sections of
the coil, i.e. the central fiber of the coil. LetΣ be the plane
square surface supported byΓ, i.e ∂Σ = Γ, where∂ denotes
the boundary operator. Let finallyΣ− ⊂ Σ be the intersection
of Σ with the air region surroundingC. This is a smaller
square surface, placed in the air and closing the aperture of
the coil. Three methods to compute the fluxϕ are compared.
The first method (denotedb) consists in computing the flux
of b through Σ, whereas the second method (denotedb−)
computes the the flux ofb through Σ−. The third method
consists in applying (9) ; two different current shape functions
w have been considered in this case. The one denotedI

assumesC is a massive conductor, whereas the other one,
denotedJ , assumesC is a coil, for whichj can be expressed
analytically. This problem is linear.

IV. CALCULATIONS

Fig. 2 showsL as a function of the number of elements.
The three methods lead to different values ofL, the difference
is up to 50%. Methodb leaves indeed to the user the task
of choosing the integration surface. Different choices lead to
different values of the computed inductance. Methoda, on
the contrary, has no free parameter. The integration surface is
implicitly determined by the energy criteria.

Fig. 4 shows now specifically static inductances computed
with methoda with 3 different meshes (gmsh, ANSYS and
gmsh with a structured grid inC), Fig. 3. One sees that for
unstructured meshes, gmsh and ANSYS are equivalent. One
sees also that the current density has an effect on the computed
inductance. For the same geometry, the inductance of a coil
(The factorn2 has not been added here.) is in this case 10%
larger than the one of a massive conductor.
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Fig. 2. Inductance in function of the number of elements. The three groups
are computed with the methodsb, a andb

− resp., from top to bottom.

Fig. 3. Cross sections of the meshes inC with, from left to right : ANSYS,
gmsh unstructured and gmsh structured.

V. CONCLUSIONS

A general definition of the notions of fluxes and inductances
based on an energy balance has been proposed. The analysis
has been done for a system with one single coil, but it can
be generalised straightforwardly. This approach has no free
parameter. The only assumption is that the current shape
function does not vary too much in time. The way the
definition of inductance must be adapted in the presence of
couplings (hysteresis, deformation, . . . ), as well as the non-
linear and dynamic cases, will be addressed in the full paper.
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Fig. 4. Inductance as a function of mesh refinement, with 3 different meshes
(gmsh, ANSYS and gmsh with a structured grid inC).


