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Abstract— In this paper an efficient method for modeling
coupled magnetic field and circuit problems is presented. The
field problem is solved by applying the Finite Element Method.
The non–linear electric circuit system is solved by applying the
Newton–Raphson method. The FE and the circuit systems are
solved seperately which in turn gives the possibility to consider
different time constants for each domain. In opposite to widely
used strong coupled methods, this paper introduces a different
approach by applying an energy–based parameter identification.

I. I NTRODUCTION

The development of electrical machines is often done solely
by applying the Finite Element Method to the magnetody-
namic domain. The natural excitation source of the magnetic
field, the current, must be estimated in advance. Since electri-
cal machines are often fed by voltage sources, a simple FE–
model is not capable to regard the interaction of the coupled
circuit–field system. Many approaches based on strong and
weak coupling as well as on parameter identification have been
developed [1],[2].
In this paper a 2D model of a stranded conductor is consid-
ered. Though the coupling mechanism is not limited to 2D
problems, the model will be used as a prove of concept.

II. FIELD AND CIRCUIT EQUATIONS

The field and the circuit equations are well known. Thus
only a brief overview will be given here.

A. The Field Domain

The equation covering a 2D problem based on the vector po-
tentiala for a non–conducting region derived from Maxwell’s
equations is known as [3]:

−∇ · (ν∇az~ez) = ~0. (1)

For the cross section of a stranded conductor, e.g. a coil, the
equation is

−∇ · (ν∇az~ez) = jz~ez (2)

with the current densityjz = Ir
wr

Sr
. Hereinwr is the number

of turns, Ir the current andSr the area of the stranded
conductorr. The standard Gelerkin scheme is applied to obtain
the FE–formulation.

B. The Circuit Domain

The circuit simulator is based on the modified nodal anal-
ysis and non–linearities are treated by the Newton–Raphson
method which leads to the following equation system:

J · ~s = ~r. (3)

The solution vector is given by~s = (ν1 . . . νm, x1 . . . xn)T

with the nodal potentialsνm and the internal quantities
xn. The internal quantities may be used if it is impossi-
ble to explicetly solve the equation. The right–hand side
~r = (−i1 . . .− im,−F1 . . .− Fn)T includes the flow vari-
ables and the load vector of the internal quantities. The
Jacobian matrixJ includes the derivatives of the flow variables
with respect to the nodal values and internal quantities.

III. E NERGY BALANCE IN MAGNETODYNAMICS

The Thermodynamic principles are valid for electromag-
netism. Upon this fact an energy based theory has been
developed [4]. The theory is based on four energy reservoirs,
each of them associated with one state variable:a, j,d, u.

A. The Energy Balance

The model contains the magnetic energy reservoirΨM (a),
the reservoir of the kinetic energy of charge carriersΨK(j),
the electric energy reservoirΨE(d) and theu–reservoir, with
the latter one always being empty. In case of magnetodynamics
ΨE is empty, because ofd ≡ 0. Except for superconductors,
ΨK vanishes as well.
The balance of magnetic energy denotes from the Thermody-
namic point of view

∂tΨM = Ẇ + Q̇ + Ẇm (4)

where the dissipation functional due to magnetic hysteresis
Q̇ and the work delivered by magnetic forceṡWm are not
considered for the sake of clarity. Thus (4) simplifies into

∂tΨM = Ẇ =
∫

Ω

j∂ta. (5)

B. Parameter Identification and Mapping of State Variables

In case of electromagnetic systems containing coils, a FE–
model with the state variablesa andj is used. While incorpo-
rating the vector potentiala directly into the circuit equation,
the representation through inductances with the scalar state
variableϕr, the flux, seems to be more straightforward.
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Fig. 1. The energy flow between the field and the circuit domain.

The flow of energy from the circuit domain to the field
domain is shown in Fig. 1. A relationship between the two
representations demands a definition ofϕr in function of a.
Having a look at Fig. 1 the relationship of the field and the
scalar state variables between the energy reservoirsΨM and
ΨK can be obtained:

∫

Ω

j · ∂a
∂t

≡
∑

r

Irϕ̇r. (6)

With the current only flowing through the stranded conductors,
the current density may be expressed as:

j =
∑

r

Ir
wr

Sr
. (7)

Equation (7) in (6) yields:

ϕ̇r =
∫

Ω

wr

Sr
· ∂a

∂t
. (8)

If one makes the assumption, that the current distribution
functionswr

Sr
do not depend on time, which is true for stranded

conductors, the mapping

ϕr =
∫

Ω

wr

Sr
· a (9)

between the scalar and the field state variables has been found.

IV. COUPLING OF CIRCUIT AND FIELD DOMAIN

To identify the magnetic energy, two different approaches
are possible. Firstly, a look–up table of the magnetic energy
is computed before the coupled simulation over the complete
state space of the system. The major drawback is the expo-
nentially growth of the table if the number of state parameters
increases.
Secondly, the magnetic system is linearised around a given
working point. The linearised model is described by

R−1
r (∂tδϕr − δUr) = δIr (10)

L∂
rsδIs = δϕr (11)

whereδϕr, δUr and δIr are the linear, scalar state variables.
It can be shown that the tangent inductance matrix is given by

L∂
rs = WriJ

−1
ij Wsj with Wri =

∫

Ω

wr

Sr
· αi, (12)

whereαi is theith shape function of the FE–formulation and
Jij is the corresponding entry of the Jacobian matrix of the
non–linear FE formulation.
The equations (10) and (11) are incorporated within the circuit

simulator by using the Jacobian matrix given by (3). Therefore
δIr must be included as an internal quantity of the solution
vector~s. With the derivatives of the linearised model

∂δIr

∂δUr
= −R−1

r ,
∂δIr

∂δIs
=

L∂
rs

Rr
· ∂t,

∂δϕr

∂δIs
= L∂

rs, (13)

the equation system of the circuit simulator becomes:(−R−1
r L∂

rsR
−1
r ∂t

0 L∂
rs

)
·
(

δUr

δIr

)
=

(
δIr

δϕr

)
. (14)

By applying this approach the circuit simulator is capable of
treating high dynamic and complex circuit systems coupled
with electromagnetic transducers, which are linearised around
a constantly adjusted working point.
The flowchart in Fig. 2 outlines the simulation chain. Due
to the small time constant of the circuit system compared to
the one of the electrical machine, the simulation is repeated
until the difference in one of the currents since the previous
FE–calculation exceeds the given limitî. Then, a new FE–
calculation is triggered andL∂

rs updated. If the change in
one of the inductances exceeds the given limitl̂, the circuit
simulator steps back in time and a new FE–calculation is
carried out with the adjustedδIr.
This reduces the number of simulation steps performed on the
FE–domain compared to a strong coupled approach.
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Fig. 2. Flow chart of the coupled simulation.

V. CONCLUSION

The presented method allows an efficient simulation of
coupled problems. The order reduced model and the state
mapping between the circuit and the field domain are obtained
through an energy based approach. In opposite to strong
coupled methods, each domain can be simulated with its own
time constant which reduces the computation time compared
to strong coupled methods, wherein the smallest time constant
of the system is determined. Further details and a comparison
with alternative coupling methods will be presented in the full
paper.

REFERENCES

[1] H. De Gersem, R. Mertens, D. Lahaye, S. Vandewalle and K. Hameyer
“Solution Strategies for Transient, Field-Circuit Coupled Systems”,IEEE
Transactions on Magnetics, 36(4):1531-1534, July 2000.

[2] J. Vään̈anen, “Circuit Theoretical Approach to Couple Two-Dimensional
Finite Element Models with External Circuit Equations”,IEEE Transac-
tions on Magnetics, 32(2):400-410, March 1996.

[3] N.M. Abe and J.R. Cardoso, “Coupling Electric Circuit and 2D–
FEM Model With Dommel’s Approach for Transient Analysis”,IEEE
Transactions on Magnetics, 34(5):3487-3490, 1998.

[4] F. Henrotte and K. Hameyer, “The Structure of EM Energy Flows in
Continuous Media”, IEEE Transactions on Magnetics, 42(4):903-906,
April 2006.


