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Abstract—The estimation and calculation of the acoustic sound
of electric machinery is nowadays of particular interest. Various
approaches have been presented relying either on analytical
or on numerical models. In general, the analytical models are
based on the electromagnetic-field theory and the results are
compared to measurements. Numerical models allow for the
separation of different exciting forces stemming from various
effects. In the studied case of an induction motor with squirrel-
cage rotor three effects are taken into account in the analytical
model: the fundamental field, saturation, and eccentricity. The
numerical analysis is applied to the analysis of acoustic sound
of an electric machine. Nevertheless, the numerical results have
to be verified. Hence, they are compared to the physically based
analytical results. The radiated noise depends directly on the
surface’ deformation of the machine. Therefore, the analysis
is focused on the structure-dynamic vibrations. The combined
analysis presented here, allows for the reduction of vibrations
and noise optimizing the coupling of the machine’s stator and
housing. Here, an Induction Machine (IM) with squirrel-cage
rotor is studied. Its housing is mounted with six spiral-steel
springs to the stator. With the presented method the impact of
different numbers of springs is analyzed.

I. INTRODUCTION

There have been several contribution to both, the analytical
[1]–[3] and numerical [4]–[6] approach of estimating the
radiated noise of electrical machinery. A comparison as well
as a combination of both methods allows for more reliable pre-
dictions and faster improvements of the machine’s structure. In
this paper an Induction Machine (IM) with squirrel-cage rotor
is studied by means of analytical and numerical methods. At
first the applied models are introduced. In general, the structure
of an IM is not purely cylindrical as the analytical models of
[1]- [3] assume. For comparison reasons different numerical
Finite-Element (FE) models are introduced and results are
analyzed.

II. ANALYTICAL MODEL

The analytical model [1] is based on the analysis of the
force-wave behavior resulting from the normal component of
the air-gap flux-density Bn depending on space x and time t:

Fr(x, t) =
B2

n(x, t)
2µ0

(1)

with µ0 being the magnetic field constant. B2
n(x, t) results

from the fundamental and harmonic field of the stator in-
teracting with the induced fundamental and harmonic field
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Fig. 1. Simplified analytical model of IM with teeth.

of the rotor. Three major effects are considered in the ana-
lytical model: The fundamental air-gap field, the saturation
of the lamination and static and dynamic eccentricity. Each
harmonic, i.e. each exciting force-wave frequency, results in
oscillating space modes along the circumference of the stator
at the air gap. The mode numbers r depend on the origin of
the interacting field components of stator and rotor.

These force waves excite the structure of the machine,
i.e. stator and housing. The analytical model simplifies the
machine’s structure to a cylindric ring as described in Fig.
1. In order to include the effect of slotting, the cylinder-ring
model is modified taking the teeth into account introducing
the adjusting factor

∆ =
yoke weight

tooth weight + yoke weight
. (2)

The weight of yoke and teeth is the equivalent to the corre-
sponding cross sections. The eigenfrequency of r = 0 reads

F0 =
Cs

2π ·N ·
√

∆
(3)

with

Cs =

√
E

ρ
(4)

Cs is calculated taking the mass density ρ and Young’s modu-
lus E into account. With the analytical model the deformation
magnitude of the analyzed oscillation mode r is estimated
on the outer radius of the stator Ra. For this, the static and
dynamic deformation factor needs to be calculated for an
adequate cylinder ring. Since r = 0 results in pure tensile
stress the static deformation is calculated to

Y0,stat =
R ·N
E · h

· σ(f, r = 0) , (5)



TABLE I
STATIC DEFORMATION FACTORS FOR DIFFERENT MODES r.

r 0 1 2 3 4 5 6

ηr,stat 1.0 596.4 35.7 5.0 1.4 0.6 0.3

with the natural yoke radius N , the height of the yoke h, and
the inner radius of the stator R. The static deformation for
mode number r ≥ 2 are estimated with

Yr,stat =
R ·N
E · h

· σ

i2(r2 − 1)2
for r ≥ 2 (6)

with
i =

(
1

2
√

3

)
·
(

h

N

)
. (7)

The static factor as ratio of Yr,stat

Y0,stat
reads:

ηr,stat =
12

(r2 − 1)2
·
(

N

h

)2

for r ≥ 2 . (8)

Bending forces are generated by r = 1. In this special case
the corresponding static factor reads

η1,stat =
4
3

h · lFe

N ·
(

d
L

)4 · L
, (9)

where lFe is the effective stack length and L the distance
between both bearings. For r ≥ 1 the factors given above
are multiples of the deformation calculated for r = 0. Table
I resumes the calculated static deformation factors for the
studied IM.

The relative sensitivity of the structure γ is defined as the
ratio of the force-wave harmonic fr and the eigenfrequency
F0. With this and the bending and longitudinal oscillation
frequencies fB

r and fL
r respectively, the dynamic factor reads:

ηr,dyn =
r2 − γ2[

γ2 −
(

fB
r

F0

)2
]
·
[
γ2 −

(
fL

r

F0

)2
] for r ≥ 2 .

(10)
In the special case r = 1, the lowest bending eigenfrequency
is of interest:

F ′′
b1 =

1
2π

√
c′′1
m′′ . (11)

For a machine with the shaft diameter d the spring constant
c′′1 and the adequate mass m′′ read:

c′′1 =
3π

4
· E ·

(
d

L

)4

· L. (12)

The adequate mass m′′ is calculated by

m′′ = ρFe ·
{

l
[
(2R)2 − d2

]
+

1
2
· L · d2

}
, (13)

with the mass density ρFe of the rotor. The dynamic defor-
mation factor r = 1 reads:

η1,dyn =
1

1− γ2 ·
(

F0
F ′′

b1

)2 . (14)
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(a) Resulting factor ηstat · ηdyn(r).
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(b) Resulting factor ηstat · ηdyn(r) in analyzed frequency range.

Fig. 2. Resulting factor ηstat · ηdyn(r).

Finally, the overall deformation amplitude is calculated by

Yr = ηr,stat · ηr,dynamic · Y0,stat . (15)

Fig. 2(a) shows the resulting behavior of the factor ηstat ·
ηdyn(r). Each mode number r shows a resonance. Due to the
small size of the studied IM (800 W) these resonance frequen-
cies are rather high. For r ≥ 4 they are beyond the human
ear’s hearing ability. Next to this the modes r ≥ 3 produce
rather small amplification factors throughout the spectrum. For
the analysis of the studied machine, the spectrum is reduced
to fmax = 1200 Hz. Here, the entire range of frequencies
shows constant amplifications for all modes as Fig. 2(b) shows.
Therefore, the analysis of the deformation is reduced to small
mode numbers r ≤ 10. In case there are even two modes at
the same frequency, the amplification factor decides, which of
whom is important and which is negligible.

III. NUMERICAL MODEL

The Finite-Element model (FE) of the studied IM includes
all mechanical parts of the machine as Fig. 3 shows. This
complicated structure of the IM does not correspond exactly
to the cylindrical analytical model. The simple model consists
of the stator with winding. The numerical model provides the
deformation for all nodes of the FE-model. After discretizing,
the following oscillation equation is obtained:(

K + jωC − ω2M
)
·D = F . (16)
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Fig. 3. Mechanical FE-model (exploded view).
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Fig. 4. Sampling of the stator deformation at location of springs.

In a second step of this study, the numerical model is
modified applying the entire machine structure as shown in
Fig. 3. In order to compare the results of both, the analytical
and numerical model, the analytical is re-applied for the
housing. For this, the deformation of the stator on the outer
radius Ra is sampled, depending on the number of spiral-
steel springs (Fig. 4). With the deformation samples the force
excitation of the housing is calculated applying Hooke’s law:

σ = E · ε and ε =
∆l

l
. (17)

l = h is the height of the stator yoke and ∆l the value of
the deformation at the location of the spiral-steel spring. The
sampling can either be performed with the FE-model or the
analytical model. After sampling, σ is transformed to the space
domain providing the appearing modes of force excitation
r(σ). Due to the sampling, aliasing appears, depending on
the original mode number. Fig. 5 shows the sampling and
resulting mode numbers for f = 618 Hz exemplarily. The
stator deformation shows a strong mode r = 6. In the case of
three spiral-steel springs, the most significant mode numbers
are r = 0 and 3, respectively.

IV. RESULTS

At first, the results of the analytical and numerical models
without housing are compared. The deformation is analyzed
by separating the modes r. By this, the impact of the mode

r

x f
x f

Fig. 5. Aliasing effect changing the exciting modes on the housing.
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Fig. 6. Comparison of deformation amplitudes for models without housing.

number can be studied as well. Resuming the deformation
values for some selected frequencies, Fig. 6 shows, that in the
case of two significant modes of the exciting surface-force
density the lower mode number has a significantly higher
impact in any case. At f = 844 Hz for example, the mode
numbers r = 4 and 8 occur, the latter having the higher
force magnitude. Nevertheless, r = 4 reaches the higher
deformation amplitude by a factor of 5.8. It can be stated that
in general, if two modes appear the higher can be neglected
[1]. The only exception is the case of r = 0, which might
produce lower deformation than r = 1 and 2. Next to this,
Fig. 6 shows very good agreement of the analytical and
numerical models. Since the analytical model has been verified
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Fig. 7. Comparison of deformation amplitudes for models with housing.
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Fig. 8. Comparison of different stator-to-housing couplings.

by measurements many times before [1] the numerical model
is stated to be reliable.

Finally, the mechanical deformation is simulated for the
machine model with the entire detailed structure (Fig. 3). In
this way, the impact of different stator-to-housing couplings is
analyzed. Three models are studied: A model with 3 another
with 6 spiral-steel springs and one with a shrinked stator,
equivalent to an infinite number of springs is studied. Fig. 7
compares the analytical and numerical models with 6 springs.

Two effects can be stated: The first is, that the housing
increasing the stiffness of the machine as an additional mass,
i.e. the height of the cylinder ring increases (Fig. 1), and it
reduces the maximum deformation. On the other hand, the
aliasing effect shown in Fig. 5 results in smaller and additional
mode numbers producing larger deformation. Both effects are
detected in Fig. 7. For example f = 844 Hz shows larger
deformation values for the model with housing and six springs.
This is due to the fact that the original mode number r = 8
is transmitted to r = 1 and 2. For f = 520 Hz the maximum
deformation at mode r = 2 is reduced by more than 50 %.

Fig. 8 shows the comparison of the three different stator-to-
housing couplings applying the body-sound index LM . It can
be stated that for all analyzed frequencies the shrinked model
results in the lowest deformation and vibration. Therefore, this
variant will produce the lowest noise radiation. The variant
with 3 springs is the worst and must be avoided.

Large deformation differences can be stated for 1462 Hz (cf.

Fig. 9. Deformation of stator at 1462 Hz for 6-pin model.

Fig. 10. Deformation of housing at 1462 Hz for 6-pin model.

Fig. 8) regarding the models with 3 pins or 6 pins coupling
the stator to the housing. For this frequency, deformation and
mode results are presented in more detail in the following
section.

Figs. 9 and 10 show the deformation of stator and housing
for the frequency 1462 Hz for the model with 6 pins. A
very strong mode 2 deformation can be stated. The same
evaluation is performed for the model with 3 pins. The
results are depicted in Fig. 11 and 12 for the stator and the
housing respectively. Here, the same force excitation leads to
a dominant mode with r = 1. Additionally, it can be read from
the scale that the maximum deformation amplitude is higher,
as if was expected from the results in Fig. 8.

Figs. 13 and 14 summarize the deformation modes for the
model with 6 pins and the model with 3 pins. Here, the
dominant mode r = 2 can be seen for the model with 6
pins. The model with 3 pins does not show this mode due
to aliasing effects, here the deformation stemming from the
force excitation in the stator is translated almost entirely to a
mode r = 1.

V. OPTIMIZATION OF THE COUPLING BETWEEN STATOR
AND HOUSING

In the previous section, it has been demonstrated that
shrinking results in the lowest deformation amplitudes. Due



Fig. 11. Deformation of stator at 1462 Hz for 3-pin model.

Fig. 12. Deformation of housing at 1462 Hz for 3-pin model.

to manufacturing reasons the coupling through spiral-steel
springs is normally preferred. Therefore, a procedure, which
determines the optimum number and distribution of the spiral-
steel springs is needed.

This optimization is performed under the following assump-
tions:

• The housing is cylindrical and the spiral-steel springs are
distributed in the inner radius of the housing.

• The spiral-steel springs transmit the force excitation from
stator to housing at one point, ideally.

• The mechanical behavior of the housing has no influence
on the mechanical behavior of the stator.

The objective of this optimization is the minimization of
the sound intensity level Lf for the frequency that generates
its maximum value:

Z = min[max[LIf
]]. (18)

The value of the sound intensity level for each frequency is
defined as

LIf
= 10 · log

If

Isf
, (19)

where Isf is the threshold value for the human ear of the
sound intensity for the frequency f . If is the sound intensity
generated by the deformation on the surface of the housing
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Fig. 13. Modes at 1462 Hz for 6-pin model.
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Fig. 14. Modes at 1462 Hz for 3-pin model.

with frequency f . For points at a distance d from the surface
of the housing, If can be calculated as

If = k ·
u2

f · f4

d2
, (20)

where k is a constant, which dependents on the radiation
characteristics of the machine and uf the amplitude of the
displacement with frequency f . The displacement of the
housing is equal to the sum for all significant mode numbers
of the deformation amplitude, which is calculated using the
analytical model as follows

uf =
rmax∑
r=0

Yr =
rmax∑
r=0

R ·N
E · h

ηr,stat · ηr,dyn,f · σr,f , (21)

where σr,f is the force excitation for mode number r and
frequency f transmitted from stator to the inner radius of the
housing through the spiral-steel springs.

The force excitation through the inner radius of the housing
for f is

σf (x) =
Nsp∑
i=1

σi,f · δ(x− xi), (22)

where Nsp is the number of spiral-steel springs and σi,f

the force excitation in stator in the position of the spring
and, which is transmitted completely to the housing. δ(x)
is the unit impulse function and xi is the position along



the circumference of each spring, which in the case of a
symmetrically distribution can be written as

xi = α + i
2π

Nsp
, (23)

where α is the position of the first spring. σf (x) can be
expressed as a Fourier series with the following coefficients

ar,f =
1
π

Nsp∑
i=1

σi,f · cos(r · xi) (24)

br,f =
1
π

Nsp∑
i=1

σi,f · sin(r · xi) (25)

σr,f =
√

a2
r,f + b2

r,f (26)

The latter can be used as input data for the calculation of the
displacement of the housing, see (21).

Once the objective function for the optimization is defined,
three different approaches according to the optimization pa-
rameters are possible:

• The spiral-steel springs are distributed symmetrically at
the stator outer radius and the influence of the position of
the first spring is neglected (α = 0). In this case, the only
optimization parameter is the number of springs Nsp and
the only constraints are that the number of springs should
be a natural number and that due to practical reasons it
has to be between 2 and 20.

Nsp ∈ N and (27)
2 ≤ Nsp ≤ 20. (28)

In this case, the one-dimensional optimization can be
easily solved by trying all possibilities.

• The spiral-steel springs are distributed symmetrically at
the stator outer radius and the influence of the position
of the first spring α is taken into account. This results in
a mixed optimization with two optimization parameters:

– the number of spiral-steel springs, with the same
constraints as in the previous case and

– the position of the first spring α, with the constraints

α ∈ R and (29)

0 ≤ α <
2π

Nsp
. (30)

This mixed two-dimensional optimization can be solved
using an optimization algorithms such as differential
evolution [8].

• The spiral-steel springs are allowed to be distributed
unsymmetrically. This results in two types of optimization
parameters:

– the number of spiral-steel springs, with the known
constraints and

– the position of each of the strings

xi, i = 1 . . . Nsp. (31)

The constraints applying to each of these variables
are:

xi ∈ R+ and (32)
xi 6= xj , j = 1 . . . i. (33)

The second constraint forbids that two springs have
the same position.

In this case, the number of optimization parameters
depends on the value of one of these parameters (Nsp).
Therefore, it is not possible to apply directly an opti-
mization algorithms. Taking advantage of the fact that
Nsp can only take 18 different values, the optimization
of the positions of the springs can be done for each value
of Nsp and the global optimum will be the best of the
local optima.

The third case is the most general one and the solution
of it is sure to be the global optimum, because the possible
optima for the first two cases are only a restriction of the
possible optima for the third case. This means that it is possible
that the optimization of the spring distribution results in a
symmetrical distribution such as is assumed in the first and
second cases. The optimization effort in the third case is of
course also higher.

VI. CONCLUSION

The presented paper reviews the analytical theory of [1] and
verifies the introduced numerical structure-dynamic model.
The analysis of the deformational modes shows, that small
mode numbers have the strongest impact by far. The coupling
of housing and stator should either apply shrinking or and ad-
equate number of spiral-steel springs. Moreover, a generalized
procedure to optimize this coupling is presented and the neces-
sary optimization effort is discussed for different assumptions
about the coupling. Further results of this optimization will be
presented in future works.
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