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1 Introduction

Non-linear quasi-static magnetic problems are gov-
erned by the equation

Vx{(vV x A)+ o%’?

J o, 1)
with v the reluctivity tensor [Am/Vs], A the magnetic
vector potential [Vs/m], ¢ the electric conductivity
[A/Vm] and J the applied current density vector
[A/m]. Eq. (1) must be complemented with an appro-
priate gauge and appropriate boundary conditions in
order to determine a unique solution [1]. In case A and
J are phasors, applying the Galerkin finite element
method to Eq. (1) yields a system of non-linear com-
plex equations.

F(A)= k(&)+ LR-F =0 |

with A the (n x 1) column vector of the phasor-valued
connectors, K the stiffness matrix, L the eddy current
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matrix, T the source current vector and F the residual
vector [2,3]. This paper presents a combined Picard-
Newton scheme for iteratively solving Eq. (2). The
solution process is started by performing Picard-
iterations. As soon as an estimator indicates that the
expected convergence rate of the Newton-strategy is
close to quadratic, Newton-iterations take over the so-
lution process. This hybrid approach yields a shorter
overall computation time. The method is illustrated
for the two-dimensional simulation of the short-circuit
operation of a 400 kW induction motor.

2 Picard vs. Newton scheme

The Picard-method (equiv. successive substitution) is
obtained by successively evaluating the stiffness ma-
trix and solving the complex system of equations. This
system is complex symmetric and of size (n x n). For
this purpose, either the Conjugate Orthogonal Conju-
gate Gradient method [4] (COCG) or a variant of the
Quasi-Minimal Residual method (QMR) for complex
symmetric matrices [5] can be used.

The basic idea behind the Newton-method is to set the
first order Taylor series expansion of the residual to
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zero. However, when working with complex variables,
the Taylor series expansion is only defined if the re-

sidual is an analytic function of A. Unfortunately, in
magneto-dynamic problems, this is generally not the
case [6]. Consequently, in order to use a Newton-
scheme, one has to derive the Jacobian from the
equivalent real representation of Eq. (2). In this case,
a real positive definite, but non-symmetric system of
size (2n x 2n) has to be solved [6]. As a consequence,
system solvers such as the Bi-Conjugate Gradient
method (BiCG) or the Generalized Minimal Residual
method (GMRES) can be used.

Unfortunately, the computational cost for applying
BiCG on the real equivalent system is approximately
twice the one for applying COCG on the complex
symmetric system. This favours the Picard-approach.
On the other hand, the Picard-strategy makes no use of
any information about the differential reluctivities in
the elements. For this reason, it features a lower as-
ymptotic convergence rate of the non-linear residual
when compared to the Newton-strategy. However, it is
observed in practice that the initial convergence rate
of both strategies is more or less the same. Moreover,
if both strategies start from the zero solution, the first
iterate is identical. Therefore, it is suggested to initiate
the solution process by Picard-iterations and to switch
to Newton-iterations as soon as a significantly better
convergence rate can be expected.

3 Truncation error estimator

One can show that the solution of Eq. (2) can be ob-
tained by minimizing half the square of the residual

norm:
(&)

For a particular iterate Rk, the second order Taylor

2

F&)=1 3)

series expansion of F forms a quadratic mod-

el FI™|A} in a multi-dimensional space. The closer an

iterate Rk approaches the solution, the smaller the

steps towards the solution are, the better this quadratic
model describes the function in the vicinity of the so-



Iution. As a consequence, the quality of the quadratic
model can be monitored by continuously evaluating
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for two subsequent (Picard)-iterates. This parameter is
an estimator for the truncation error of the quadratic
model and it is therefore expected to indicate when
quadratic convergence of the Newton-scheme can be
assumed. One can even improve the estimator by tak-
ing into account the relaxation factor of the applied
line-search algorithm. This cannot be outlined here.
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4 Example

The technique is applied for the two-dimensional
simulation of the short-circuit operation of a 400 kW
induction motor (Fig. 1). Fig. 2 shows « and its im-
proved version, while performing Picard-iterations.
Initially, it is zero, due to the severe relaxation close
to the initial zero solution.

Fig. 1: Magnetic field in a short-circuited induction motor.
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Fig. 2 : The value of the basic (dotted) and improved (solid) trun-
cation error estimator during the convergence process of the
Picard-method.
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Fig.3: The residual norm as a function of computation time, for
the Newton method (dashed), the Picard method (dotted) and the
hybrid Picard-Newton method (solid).

Once over the top, the error estimator steadily de-
creases and it is decided to move onwards using the
Newton scheme. Fig. 3 shows the effect on the overall
computation time.
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Abstract:

A methodology for deri: wng 4 surface waveimpedance that can be used within an asymp{at;c UTD ray-teacing model of
surface wave diffraction is deseribed in this paper, Fock theory can be used to calculate electromagnetic. surface wave
:propagation.on non-conducting; convex surfaces that are represented by an impedance boundary condition.. A numerical
estimate of the surface wave impedance presented to TE electromagnetic: radiation propagating over-a conducting,
cofivex surface uniformly coated with' a thin, fossy-layer can be found fom 4 2D finite element Hime domain analysis.
Surface wave impedance values derived from the CEM model lling:are subsequentty plugged into an asymptotic model
in order to produce comparative prediction datd with which to validate the approach. Simple curve-fitting procedures
can be used to characterise the impedance over a range of frequendics and material properties for which the impedance
boundary -approximation is valid. The material corrections for the TM. polarisation state are an order of magnitude
‘smaller than the standard Fock theory predictions for a perfectly conducting body and have therefore been neglected.
The problem is relevant to the performance prediction of antennas installed on: non-perfectly conducting, coated bodies
on which impedance boundary:conditions apply. Only surfaces with constant cirvature that were umformiy coated with
lingar, isotropic homogeneous materials were-considered for this study,

Keywords: surface waves; impedance. boundary conditions; Fock theory, surface difffaction, UTD, asymptotics,
installed antenna performance, finite element modelling, computational electromagetics, material layers
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