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Abstract
Purpose — The purpose of this paper is to analyse the accuracy of the thrust force of a linear actuator
computed with different finite elements models.

Deéign/methodology/approach — A series of 2D and 3D models corresponding to different levels
of approximation of the original problem are considered. A reliable error estimator based on dual
magnetostatic formulations is used.

Findings — A 3D mode!l does not necessarily ensure more accurate results than a 2D model. Because
of limitations on the number of mesh elements, the discretisation error in 3D can be of the same order
of magnitude as the error introduced by the 2D approximation.

Originality/value ~ The results emphasise the need to consider errors arising from different
simplifications with respect to one another, in order to avoid improvements of the model increasing the
complexity but not improving the accuracy of the results.

Keywords Finite element analysis, Force measurement, Electric machines, Actuators, Flux,
Transverse waves

Paper type Technical paper

1. Introduction
The finite element (FE) method is a versatile and powerful numerical method for the
solution of partial differential equations. It is widely used for the numerical analysis of
electrical devices. In general, obtaining a solvable FE model requires several
simplifications of the original physical system, in order to reduce its complexity.
Approximations can be made on a rigorous basis. One can for instance eliminate
negligible terms in an equation on basis of a dimensional analysis. However, the loss of
accuracy resulting from simplifications is in general difficult to quantify. The influence
of the 2D approximation on global quantities like energy or the force is very sensitive
to the geometry of the studied system. This paper proposes an analysis of the accuracy
of the force computed with different FE approximations of a linear actuator. The goal
is to determine a FE model that minimises the computation time, but nevertheless
yields sufficiently accurate results, so that it could be used to perform an optimisation
of the device,

After a brief description of the actuator, a series of models (2D and 3D)
corresponding to different levels of approximation of the original problem are
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considered. The dual vector potential ¢ and scalar potential ¢ formulations in 2D and
3D are recalled. Appropriate boundary conditions for the different models are
discussed. An error estimator based on the results of these dual formulations is then
defined. Two force computation methods are used: the direct finite differentiation of
energy or coenergy, and the eggshell method.

2. Description of the motor

The actuator has been described in detail in previous papers (Vande Sande et al., 2002;
Deliége et al, 2003). It consists of two identical linear motors facing each other
(Figure 1). The stators are long C-cores with a coil wound around the vertical arm. The
lower and upper arms are toothed in such a way that the stator of one motor is shifted
by a quarter of a pole pitch with respect to the stator of the other one. The equivalent
to the rotor is here called mover. Each mover consists of a stack of five blocks: a
permanent magnet block magnetised along the X-direction, a block of iron, a second
permanent magnet block magnetised along the — X-direction, a second iron block and
finally a third permanent magnet block again magnetised along the X-direction. The
movers of the two motors are fixed on both sides of a piece of non-magnetic material of
the same length as the movers, in order to avoid any magnetic interaction between the
two motors. The actuated optical system is fixed to that central piece. As they are
magnetically independent, only one motor need to be considered in the FE model.

3. Geometric simplifications

Originally, the aim of this FE analysis was the optimisation of the force acting on the
mover. Under certain conditions, a simple magnetic equivalent circuit can describe the
flux distribution in a permanent magnet machine with a sufficient accuracy and give a
good approximation of the thrust force at a low computation cost (Honds and Meyer,
1982). In transverse flux machines, the intricate geometry makes such an approach
impossible (Laithwaite et al,, 1971). The FE method is in that case the best alternative:
it is flexible regarding the approximation of the geometry, and the accuracy can be
controlled by user-defined parameters, such as the number of elements in the mesh.

3.1 Airgap-centred 3D model
The basis model consists of one linear actuator (one half of the whole device) enclosed
in an air box, inside which the magnetic flux is assumed to be confined. As most of the
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Figure 1.
Geometry of the linear
actuator
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Figure 2,

Coil modelling (a) explicit
definition in the geometry;
and (b) equivalent
magnetic circuit

flux remains in the regions of high permeability, ie. the iron parts of the stator and
rotor, the surrounding air box needs only to be large enough to allow leakage fluxes in
the airgap to be modelled. The enclosing box can, therefore, be placed quite close to the
structure.

On the other hand, the regions in the model where the flux paths are predictable
should advantageously be left out of the model and replaced by an equivalent external
magnetic circuit (Figure 2), so as to spare the unknowns used to describe them. In this
particular application, the vertical arm of the stator and the coil around it can be left
outside the FE model, because the accuracy of the computed force depends on the
accuracy of the field in the airgap. This geometrical simplification, called airgap-centred
3D model, devotes a maximum of the available unknowns to the description of the field
around the mover. The equivalent external circuit would consist in this case of a
reluctance and a current source. However, due to the presence of large airgaps and
magnets, the external reluctance is negligible. The excitation of the actuator can,
therefore, be included in the boundary conditions, as will be explained further.

3.2 2D model

The 3D effects around the mover can of course not be estimated by a 2D analysis.
However, 2D models has definite advantages when compared to a complete 3D model:
the definition of the geometry and the control of the mesh quality are much easier and
faster, the computational resources needed are much smaller. In total, the overall
modélling time is generally orders of magnitude lower. Therefore, it is always worth
using a 2D model as a preliminary step. This allows the designer to perform numerous
and various computations, in order to determine the overall behaviour of the system
and to investigate the influence of the parameters, at a reduced computation cost. The
2D simplified model used in this paper is a slice of the motor in the XY-plane (Figure 3).
Two regions are added, above and under the stator teeth, to represent the horizontal
upper and lower arms of the stator.

4, Finite element formulations

The dual vector potential and scalar potential formulations will be referred to as b- and
h-formulation, respectively. These formulations provide, respectively, an upper and a
lower bound for the magnetic energy (Rikabi et al, 1988, 1989). The actual error on
energy is thus smaller than the difference between the values computed with the dual
formulations.
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4.1 Boundary conditions

The airgap-centred model can be regarded as an open section of a magnetic circuit.
Particular boundary conditions must be defined to account for the magnetisation coil,
which is not explicitly modelled in the geometry. The alternatives are to fix either the
drop of the magnetomotive force I across the section, or the flux ¢, injected in the
circuit. The former is naturally imposed with a Dirichlet conditions in a s-formulation,
whereas the latter is fixed in a b-formulation. However, the flux is not a given variable
of the problem. Therefore, the s-formulation will be solved first and the results will be
used to calculate the Value of ¢ for the b-formulation (Figure 4).
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Figure 3.

Boundaries of the 3D
model; T' includes all
boundaries except I'y;
and T'p

Figure 4.
Boundaries of the 2D
model
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4.2 h-formulation

The magnetic field is usually decomposed into the sum of a source field %, and the
gradient of a magnetic scalar potential ¢:

b=k -V @

Since the coil is removed from the geometrical model, the source current density 7 is

zero, and l_zs is zero as well thanks to the fact that the domain is contractible (Bossa¥Vit,
1998). The magnetic constitutive law is:

b= ul+1), @

with [zc the remanent magnetic field, which is zero outside the permanent magnet
regions. The boundary conditions are:

¢IF;,1 = 0’ d)ll"hz = I’ (/*LV‘;[)IF;,)ZZ =0. (3)

The FE formulation reads:
Find ¢ € H #(£2) such that:

/ PV Ve = / uve b, @)

V¢ E H g, with the functionﬂspaces: Q
' Hy@) = {¢ € H(grad, 0) : ¢lr,, =0, $Ir,, = I}, ©)
Hy(@) = {¢ € H(grad, 0) : glr, o, = 0}. ®)

4.3 b-formulation

The vector potential g is by definition such that b=V xa. The flux ¢y is fixed by the
boundary conditions:

[ atar=g, vxau=o, @)
ar’ it

‘where ¢ is the vector tangent to the contour of I'y;. The formulation reads:
Find ¢ € H,(0) such that:

/M*VXJVXQ=/Vx¢@, ®
Q Q ¢
Vd' € Hy, with the function spaces: ‘
H,(Q) = {l_l € H(curl, ) : VX alr, = 0, at= gob} )
8l

HypQ) = {c_z € H(curl, 0) 1 alr, = 0,alyr, = O} (10

Building a discretised equivalent of the constrained function space HQ) is
not straightforward. One possible method consists in building a spanning edge-tree
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HQ) is
¢ edge-tree

on I'y U 8T';;. That spanning tree must, moreover, contain a tree on the contour aI';
(Henrotte and Hameyer, 2003). In other words, all edges of 81,1 but one must belong to
the tree. The degrees of freedom of ¢ are cancelled on the edges of the tree and the
remaining degrees of freedom, associated with the edges of the co-tree, are determined
so as to fulfil the condition (7) on all faces of T'. Figure 5 shows the resulting vector
potential field on the boundary 'y U 81';.

4.4 Energy, coenergy, complementary energy
Assuming linear materials, the energy W(b), the co-energy ®(k) and the
complementary energy W,(k) are defined by equation (11):

W@ﬁif(i@@—@@>dn
a\2p ¢

@@=/§@+m%n an
Q [

qu@=/u@@+@mn—®@
Q ¢

These formulae are written in the general case of a permanent magnet material with a
remanent magnetic field ch. The quantities W(b) and ¥ (k) are equal only if the FE
solution corresponds to the exact solution.

5. Force computation

The FE computation of the magnetic force acting on a body is a difficult issue, as
shown by the considerable amount of research devoted to it (Bossavit, 1990, 1992;
Henrotte et al., 2004). For this paper, an accurate method that could be applied to the 2D
and 3D models and for dual formulations was necessary. Two techniques were used:
the direct differentiation of energy and the eggshell method (Henrotte ef al, 2004).
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Figure 5.

Vector potential ¢ on the
boundary, such that its
line integral on 817
equals ¢y and curl(@).n =
OonTy
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Figure 6.

Eggshell region around
the mover in the 3D model

5.1 Energy differentiation

The thrust force acting on the mover in one direction is equal to the derivative of the
total magnetic energy or coenergy of the system with respect to the displacement in the
considered direction. However, the analytical expression of ¥ and ® as a function of
the position of the mover 1, is unknown. Therefore, these quantities must be derived

numerically. A second order accurate value of the force in the X-direction is given by
equation (12):

\P(I_))lxp=x+6x - \P(é)lxﬁzx—sx
26
_ q)(@'xpzx—i—b‘x - q)(b)lxI,:x—Sx
26%

One drawback of this approach is that it requires several solutions at different
positions, located close together enough to ensure the accuracy of the results.
Moreover, this procedure must be repeated for each component of the force, For
example, six FE solutions are required to determine the values of F. Iy and F, at one
position with equation (12). This is, however, not a hindrance in the present case: on the
one hand, the force is only computed in the direction of motion; and on the other hand,
the force profile must be determined over the entire stroke of the mover, which means
that the solution has to be computed at many different positions anyway.

Fy(x) =

12)

5.2 The eggshell method

The eggshell method (Henrotte ef al, 2004) states that the magnetic force F acting on a
rigid body can be evaluated by a volume integral over an air shell €, placed around the
moving body (Figure 6). One has:

£=/ o VudQy (13)
M

where g is the Maxwell stress tensor (MST) of air, and # is any smooth scalar
function #efined on ), whose value is 1 on the inner boundary of the shell and 0 on the
outer boundary. If the contribution of the electric force is negligible, the MST is
expressed as a function of § or % by, respectively:
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In the particular case where # varies linearly on the eggshell, the method can be given a
simple interpretation, as shown in Figure 7. The isovalues of # determine in £}, a family
I'y (%) of concentric enclosing surfaces. They fill up the volume ). as the parameter u
ranges from 0 to 1. The force acting on () can be obtained by integrating the MST on
any of those surfaces. Since the calculated force is in theory independent of the chosen
integration surface, the force is also equal to the mean of the values obtained by
integrating on all surfaces, so that one has:

8
EZ/ l/ a -@drbdu=/ ag -VudQ, 16)
o 8Jraw M 0. M

because Vi = n/8, due to the linearity of «. The surface integral is in this way replaced
with an integral on a volume. The eggshell (). can be explicitly defined in the
geometrical model or automatically. Figure 7 shows the eggshell in the 3D FE model.
It has a constant thickness. It consists of the space bounded by two concentric
parallelepipeds, subdivided into six subregions in which the normal vector #(x) is
constant and, therefore, easy to define,

6. Results

6.1 2D vesults

The 2D problem was first solved for a single position of the mover corresponding to a
maximum of the delivered force. The computation was repeated with different meshes
obtained by globally refining an initial mesh of 2,800 nodes until it reached 40,000
nodes. The energy and complementary energy converge towards each other as
predicted by theory (Figure 8). The forces computed on basis of the scalar potential and
vector potential formulations converge towards each other in a similar way (Figure 9).
However, the error on the force is significantly higher than the error on the energy
(Table D).
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Figure 7.

Tllustration of (a) the MST
method (integration on one
enclosing surface); and (b)
the eggshell method
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Figure 8.

Convergence of the total
energy and the
complementary energy,
2D model, xp = 0.125 pole
pitches, [ =0

Figure 9.

Convergence of F
computed with the
eggshell method; 2D
model, b and &
formulations, xp = 0.125
pole pitches, I =0
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This does not result from the method used to compute the force since identical values
are obtained with the eggshell method and by differentiation of the energy, when
computed with the same formulation (Figure 10). Actually, the error on the force
converges like the error on the energy and coenergy, but simply remains one order of
magnitude higher; as shown in Figure 11 where the evolution of the respective errors is
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plotted on a log-log scale. The results computed with a linear model and a non-linear
model have also been compared. There is a noticeable difference in the values of the
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induction, which reaches 2.3 T in the corners of the teeth with the linear model. thrust force
However, saturation is confined to small areas of the motor and dees hardly
influence global quantities: for example, F,, differs by no more than 0.5 per cent in the
linear and non linear cases. In summary, one can state: 329
« A grid of 20,000 to 25,000 nodes is for this model a good trade-off between
accuracy and computation time. The mesh in the eggshell does not need more
than two or three layers of elements.
» The error on the maximum delivered force stands in that case between 3 and
4 per cent.
+ Non-linear computation brings a difference of 0.5 per cent and is in the studied
example superfluous.
+ The eggshell method is reliable, easily implemented and it applies to b and &
formulations in 2D and 3D; it appears, therefore, as an ideal method for the
purpose of computing global forces.
Table L
Nb nodes Error (energy) (per cent) Error (force) (per cent) Maximum error on the
force and energy and 2D
28,000 32 18 model, two different
40,000 18 36 meshes
3-5 ¥ T T T
3F 0 -
Z 25F .
S
B
£ 2r i
A
Y
o
S 15} 7
£
g
£ 1 1 Figure 10.
Comparison of the force
—+— eggshell method (b) computed by the eggshell
051 —o— eggshell method (h) ] method and the
+ energy (b) differentiation of the
o coenergy (h) energy and coenergy;
0 ' 2D model, xp ranges from

0 0.05 0.1 0.156 0.2 0.25
Position [# pole pitches]

0 to 0.5 pole pitches, I =0
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Figure 11.

Error convergence of the
energy and the force; 2D
model, b and /
formulations, xp = 0.125
pole pitches, I =0
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6.2 3D results

The realisation of the 3D model was a more tedious and delicate task. The airbox
modelled around the mover is extremely flat because of the tiny airgap (0.4mm). As a
consequence, the characteristic lengths of the elements of the mesh have to be carefully
balanced. The solid modeller comes up against severe difficulties when the grid is too
coarse near the flat regions, but a local increase of the number of elements propagates
to the whole domain and can result in a prohibitive number of elements. Therefore, the
error convergence could not be studied by globally refining the mesh, as it was done for
the 2D model, and a single mesh with 350,000 elements has been considered.

The force in the X-direction computed for I = 200 A with both formulations is
plotted on Figure 12 as a function of the mover’s position. The difference between the
two curves reaches 26 per cent of the maximum value. In order to compare the 2D and
3D results, the mean of the forces calculated with the b and A formulations is plotted on
Figure 13. It shows that 3D effects have a non-negligible influence on the force, which
is overestimated by the 2D model. However, the latter captures the most important
features at a much lower computational cost and with a much smaller discretisation

€ITor.

7. Conclusions
The FE analysis of a transverse flux linear actuator has been presented. An

analysis of the accuracy of the thrust force computed with a 2D and a 3D model
has been carried out. A reliable global error estimator based on the results
obtained with the dual g and %-¢ magnetostatic formulations has been considered.
Two force computation methods has been used and compared. The eggshell

Force [N]

method has pr
on energy and
both quantities
order of magni
as a reference {
value of 26.pe
despite the pres
the force profile
the influence of
much lower cop
cannot be avoid
application. The
However, the r
optimisation wit]
not be very diffe
from using a n
general error ley:
On the whole,
approach, tacklin
necessity to consii
another, in order tc
Improving the acc
ensure more accur;
Is limited, the dis
magnitude as the ¢



The airbox
tmm). As a
be carefully
> grid is too
propagates
\erefore, the
vas done for
red.

nulations is
between the
s the 2D and
is plotted on
force, which
st important
iscretisation

esented. An
a 3D model
the results
) considered.
‘he eggshell

—e— b formulation
—— hformulation H

Force [N]

-0 0.2 0.4 0.6 0.8 1

Position [pole pitches]

method has proven to be accurate and easy to use. The convergence of the error
on energy and on force has been studied in 2D. It has been shown that, although
both quantities have the same rate of convergence, the error on the force is one
order of magnitude higher than the error on the energy, which is generally taken
as a reference for the global accuracy of the model. In 3D, the error reaches a peak
value of 26per cent, proving that the mesh of 350,000 elements is too - coarse
despite the presence of several layers of elements in the airgap. The comparison of
the force profiles computed in 2D and 3D shows that the shape of the curves and
the influence of the currents are qualitatively well described by the 2D model, at a
much lower computational cost and with a much better continuity. A 3D analysis
cannot be avoided because of the important role played by the 3D effects in this
application. The force computed by the 2D analysis is indeed overestimated.
However, the results suggest that one can pursue quite far the geometrical
optimisation with the 2D model, and that the resulting optimum configuration will
not be very different from the real optimum. Moreover, the improvement expected
from using a non-linear model, is in this case completely lost in view of the
general error level

On the whole, these results confirm the importance in a FE analysis of a careful
approach, tackling the problem from different angles. They also emphasize the
necessity to consider errors arising from different simplifications with respect to one
another, in order to avoid improvements of the model increasing the complexity but not
improving the accuracy of the results. In particular, a 3D model does not necessarily
ensure more accurate results than a 2D model. Indeed, if the number of mesh elements
is limited, the discretization error in the 3D model can be of the same order of
magnitude as the error introduced by the 2D approximation.
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Figure 12.

Force F, computed with
the b and £ formulations;
3D model, xp ranges from
0to 1 pole pitch, I = 200 A




COMPEL
25,2

332

Figure 13.

Comparison of the forces
computed with the 2D and
3D models; 4p ranges from
0to 1, mean of the p and &
formulations, I = 200 A

Z
]
2
£
_6 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Position [pole pitches]
References

Bossavit, A. (1990), “Forces in magnetostatics and their computation”, Journal of Applied Physics,
Vol. 67 No. 9, pp. 58124.

Bossavit, A. (1992), “Edge element computation of the force field in deformable bodies”,
IEEE Transactions on Magnetics, Vol. 28 No. 2, pp. 1263-6.

Bossavit, A. (1998), Computational Electromagnetism, Academic Press, Maryland.

Deliége, G., Henrotte, F., Vande Sande, H. and Hameyer, K. (2003), “3D h-phi finite element
formulation for the computation of a linear transverse flux actuator”, International Journal
for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL),
Vol. 22 No. 4, pp. 1077-88.

Henrotte, F. and Hameyer, K. (2003), “An algorithm to construct the discrete cohomology basis
functions required for magnetic scalar potential formulations without cuts”, IEEE
Transactions on Magnetics, Vol. 39 No. 3, pp. 1167-70.

Henrotte, F, Deliége, G. and Hameyer, K. (2004), “The eggshell approach for the
computation of electromagnetic forces in 2D and 3D”, International Journal for
Computation and Mathematics in Electrical and Electronic Engineering (COMPEL),
Vol. 23 No. 4.

Honds, L. and Meyer, K.H. (1982), “Een lineaire gelijkstroommotor met permanente magneten”,
Technical report, Philips.

Laithwaite, ER., Eastham, J.F.,, Bolton, HR. and Fellows, T.G. (1971), “Linear motors with
transverse flux”, IEE Proceedings, Vol. 118 No. 12, pp. 1761-7.

Rikabi, ], Bryant, C.F. and Freeman, E.M. (1988), “Error-based derivation of
complementary formulations for the eddy current problem”, IEE Proceedings, Vol. 135
No. 4, pp. 208-16.

—_

Rikabi, J, F
probl

Correspon(
G. Deliége cz

—_—
To purchase reprints |
T Visit our web site f



|

plied Physics,
ible bodies”,
mite element

sonal Journal
- (COMPEL),

mology basis
cuts”, IFEE

ach for the
Journal for
(COMPEL),

-e magneten”,
motors with

erivation of
ngs, Vol. 135

Rikabi, J., Bryant, CF. and Freeman, EM. (1989), “Complementary solutions of electrostatic field
problems”, IEEE Transactions on Magnetics, Vol. 25 No. 6, pp. 4427-42.

Vande Sande, H.,, Deliége, G., Hameyer, K., Van Reusel, H,, Aerts, W. and De Coninck, H. (2002),
“Design of a linear transverse flux actuator”, paper presented at the 15th International
Conference on Electrical Machines (ICEM), Brugge.

Corresponding author
G. Deliége can be contacted at: geoffrey.deliege@cs kuleuven.ac.be

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

Accuracy

analysis of the
thrust force

333




