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The Structure of Electromagnetic Energy Flows in
Continuous Media

François Henrotte and Kay Hameyer

Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen, Germany

A formulation of electromagnetism in continuous media is proposed that relies on the identification of the different existing electro-
magnetic energy reservoirs and of the flows between them. A structure is so revealed, which constitutes a natural framework to establish
the partial differential equations ruling electromagnetic systems. This energy-based formulation, which unlike Maxwell’s equations also
integrates the material aspects, clarifies several issues related to dissipative and coupled phenomena in magnetic materials, dielectrics
and conductors.

Index Terms—Capacitive energy storage, dielectric hysteresis, electromagnetic forces, energy conservation, inductive energy storage,
magnetic hysteresis, superconducting magnet energy storage.

I. INTRODUCTION

MAXWELL’s equations are generally presented as the
fundamental set of equations ruling electromagnetic

(EM) phenomena. However they address only a part of the
question. They do not provide any energy conservation rule and
leave all material aspects aside. Consequently, they need to be
complemented by constitutive laws, which are often regarded
as ad hoc relations to close the system, not subjected to any
theoretical constraint. However, in order to tackle consistently
with multiphysics problems, a theory of electromagnetism with
energy aspects involved from the beginning is needed.

II. THEORETICAL SETUP

The theoretical framework needed for this purpose relies
upon two manifolds: the material manifold of which each
point is associated with a material particle of the continuous
medium (e.g., an atom), and the Euclidean space which
represents the space where the motion takes place and which
is a manifold where a metric (i.e., the notion of distance) has
been defined.

In order to describe a possible movement and/or a deforma-
tion of the system, the placement map

is defined. It associates a position in to each ma-
terial particle at all instants of time .
The codomain of the placement map, , is the de-
formed state. On the other hand, the codomain of the map

is the trajectory of a particular mate-
rial particle (Fig. 1). The velocity field, (vectors in

are denoted with a bold letter), is the field of tangent vectors
to all trajectories of the flow at a given instant of time.

The placement is assumed to be regular and invertible at all
. It induces a 1-1 mapping, also noted , of all vector and tensor

fields defined on to the corresponding vector and tensor fields
defined on . Quantities defined on are denoted with an
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Fig. 1. Placement map at two instants of time and the trajectory ofX in E.

uppercase symbol, and corresponding quantities defined on
are denoted with a lowercase, one has .

The classical theory of electromagnetism is expressed in
terms of the so called electromagnetic fields, i.e., the vector
fields and the charge density , all defined on .
However, recent developments [1] have shown that the elec-
tromagnetic fields are more adequately defined as mappings of
the material curves or surfaces (infinitesimal or not) onto real
numbers, i.e., as differential forms on the material manifold .

The set of fields selected as state variables for this energy-
based approach is different. It consists of the electric scalar po-
tential (0-form), the magnetic vector potential (1-form),
the electric displacement (2-form) and the current density
(2-form), all defined on .

The metric on attributes an intensity to the fields defined in
, thanks to . For instance, the magnetic flux density writes

in , since the exterior derivative d is the differen-
tial geometry equivalent of the curl operator in , i.e.,

. The magnetic flux density associates a flux (in Weber)
to any infinitesimal material surface in . But one needs the
measure of in , and hence the metric on , to determine
the local intensity of the field . The magnetic
energy density is thus a function of (not of ), and of
possible other arguments like temperature, strain, etc., repre-
sented by . If the magnetic energy is noted and its corre-
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sponding density (the density of any quantity is denoted
), one has

One sees that the placement (Here the inverse of the map,
but invertibility is assumed.) suffices to define the expression of
the energy density functional in corresponding to the one
given in . (At least in theory. In practice, the mapping can
be technically difficult.) Identical considerations apply to the
mapping of all functionals introduced in this paper.

The time derivatives of the functionals require a special care.
With the commutation properties

and , where stands for the material
derivative and for the velocity field associated with the place-
ment , one has successively

The algebraic expression in of the material derivative of the
different kinds of scalar or vector fields is

(1)

(2)

(3)

(4)

Whereas the scalar material derivatives for 0-forms (1) and
3-forms (4) are well-known in fluid dynamics, where they
are valid for the components of the velocity field and of the
momentum density, the material derivative of 1-form (2) and
2-form (3) are seldom reported in the literature [5]. Note that in
the absence of motion, and .

Fig. 2. EM energy flow diagram in the material manifold M (above) and in
the Euclidean space E (below).

III. EM ENERGY FLOW DIAGRAM

Let us state at once the topology of the electromagnetic en-
ergy flow diagram as being the one depicted in Fig. 2, respec-
tively in the material manifold (above) or in the Euclidean
space (below). Both representations are equivalent, i.e., image
of one another by the placement map . The following of the
paper justifies this structure.

The diagram consists of four energy reservoirs, at the corners
of a square. Each reservoir is associated with a particular field,
resp. from the upper left to the lower right corner.
The -reservoir and the -reservoir contain respectively the
magnetic and the electric energy. The -reservoir is always
empty. The -reservoir finally, contains the kinetic energy of the
charge carriers. If denote the mass of one charge carrier,
its charge, the density of charge carriers and their velocity
field in , the current density in is , and
the kinetic energy density writes

in , with .
The flows can be classified into four categories. The white-

headed arrows represent 4 internal volume flows depending on
the state variables only, and 2 surface flows depending on the
state variables and on a user-defined surface magnetic field .
The black-headed arrows represent 3 dissipative volume flows
in terms of the state variables ( excepted) and user-defined
dissipative generalized forces and . Finally, 2 flows that
are independent of the state variables connect the diagram with
other energy reservoirs, in particular the mechanical one if the
supplementary parameters are held constant.

Note that the topology of the diagram and the mathematical
expression of the flows are the fundamental assumptions of this
formulation of Electromagnetism. They cannot be altered and
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make up the framework wherein any continuous medium elec-
tromagnetic system, also dissipative or coupled, inscribes. It is
indeed shown further that the conservation equations associated
with this fixed structure contain Maxwell’s equations.

IV. CONSERVATION EQUATIONS

As the fields , and are independent of each other,
they can be varied freely in time in order to obtain, by a simple
variational argument, the conservation equations implied by the
structure of the diagram. By expressing on the one hand energy
conservation at node in

and using on the other hand the results of Section II

two expressions of the variation in time of the magnetic energy
are obtained. Identification of the two right-hand sides gives an
equation that must be always verified, i.e., for any (sub)manifold

and any variation of . The implied conservation equations
are obtained by identifying to zero the factors of , separately
on and . Using the properties

and

(5)

one obtains

and the remaining of the equation writes

Note that the undefined dependencies in have not been ex-
pressed explicitly here, will be assumed to be constant in the
remaining of the paper.

Conservation relation at the other nodes of the diagram are
obtained similarly. One finds finally

(6)

(7)

(8)

(9)

with the definitions

(10)

(11)

the boundary condition on , and

(12)

(13)

which obviously, in the absence of any supplementary de-
pendency in , define the work delivered by electromagnetic
forces.

Equations (6)–(9) can be mapped into , thanks to the place-
ment map , so as to obtain the conservation equations, not in
terms of differential forms, but in terms of the corresponding
scalar and vector fields. Alternatively, the conservation equa-
tions can be derived directly from the diagram in (Fig. 2,
below) using vector field analysis. One obtains in

(14)

(15)

(16)

(17)

with the definitions

(18)

(19)

and the boundary condition on . The work delivered
by the electromagnetic forces writes now

(20)

(21)

V. DISCUSSION

A. Constitutive Laws

This formulation of electromagnetism gives back to the ma-
terial manifold its fundamental place in the theory. Constitutive
laws are defined by giving algebraic expressions for the energy
density functionals and to the dissipation func-
tions . The conservation (6)–(9) or (14)–(17) do not
contradict Maxwell’s equations, but they are more complete and
more detailed. All terms have a clear physical meaning in terms
of energy or energy transfer. The different regimes (magneto-
statics, electrodynamics, ) are easily characterized by cutting
off one or several reservoirs in the diagram. Equation (9), resp.
(17), is redundant with (6), resp. (14), as a consequence of the
fact that the -reservoir is empty.

B. Magnetic Field

Ampere’s law (17) is found in this way to ensure conservation
of magnetic energy. Equation (18) shows that, in the presence of
dissipative phenomena, the magnetic field decomposes actually
into a reversible part that accounts for the magne-
tization phenomenon (alignment of microscopic magnetic mo-
ments), and an irreversible part that accounts for the local
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dissipation process. The classical magnetic field is thus a com-
posite containers for phenomena of different natures. This clar-
ifies the issue of hysteresis modeling by indicating that the state
variable should be the induction (or a magnetization in Tesla)
subjected to a force deriving from a potential (the magnetic en-
ergy) and a dissipative force.

C. Forces and Motion

By setting , the -reservoir is isolated from the dia-
gram. When the system deforms, the variation of the energy of
that reservoir is therefore necessarily the mechanical power de-
livered by the magnetic forces. Similar considerations hold for
the -reservoir. The work delivered by electromagnetic forces
can then be defined by

(22)

which is equivalent to the already mentioned definitions (20)
and (21). By using (2)–(3) and factorizing , (22) leads
straightforwardly to the definition of the Maxwell stress tensor
of the material, which is the fundamental quantity representing
the electromechanical coupling [2], [3]. Motion terms like
are explicitly present by virtue of the material derivative (2),
and need not be introduced on basis of a relativistic argument.
Relativity is still an issue but it applies only to the choice of the
referential in .

D. Electric Field

As mentioned above for the magnetic field , the electric field
(19) is also a composite container for phenomena of different

nature. But the situation is for the latter still more confusing.
Indeed, (15) and (16) give

(23)

(24)

which represents not less than three equivalent expressions of
the electric field.

Equation (16) in particular is the equilibrium equation for
charge carriers, up to a factor . The term is the ap-
plied electrostatic force and the term is the viscous
force opposed by the crystal lattice. When the charge carrier ac-
celerates, a certain amount of energy has to be given to increase
its kinetic energy and another amount of energy to increase the
magnetic energy of the system, as the accelerated particle is as-
sociated with a larger current, which in turn generates a larger
magnetic field. These two energy transfers are respectively rep-
resented by the forces (up to the factor again) and

that can be regarded as two inertial forces of different na-
tures.

E. Superconductors

In practice, the -reservoir can often be considered as empty
as well, because of the very small value of (negligible inertia
of the charge carriers), and the corresponding term in (16) can
be disregarded. However, in superconductors, for which is
infinite and is zero, (16) reads

(25)

If the cloud of charge is not too much distorted, one has
, so that London’s equation for superconductors is

found back.

F. Electric Charges

The inertia of the charge carrier is also at the root of the defini-
tion of the static charges that are present at the surface of current
carrying conductors [4]. Electric charge are first defined by

(26)

Note that they are not present in the diagram, neither in the con-
servation equations. Identifying the left hand sides of (15) and
(17) and assuming , one has

(27)

The divergence of the right-hand side is identically zero (div
and commute) inside the conductor, but the term in has
a nonzero contribution on the surface of the conductor, whence
the expression of the surface charges.

G. Poynting’s Relation

Poynting’s relations is found by cutting off the -reservoir
from the diagram and noting that the two surface flows combine
to form the flow of the Poynting vector (28)

(28)

VI. CONCLUSION

The proposed energy-based approach considers the problem
of electromagnetism in a continuous medium in all its gener-
ality. The only fundamental assumptions are the continuous
medium approach and a sufficient differentiability of all quan-
tity involved. Material aspects are integrated, not under the
form of constitutive laws, but in terms of energy functionals
and dissipative generalized forces. With the obtained energy
diagram, several issues related with the interaction of EM
fields with matter (e.g., hysteresis, forces, superconductors)
find a clear presentation and a natural theoretical framework.
The proposed diagram is of a great help to establish correct
multiphysics models.
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