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Abstract— An energy-based theory for electromagnetic forces
in continuous media is presented, aiming at providing a complete
toolbox for their numerical computation. In an Euclidean space,
the electromechanical coupling is shown to be realised by a
stress tensor, in terms of which all classical electromagnetic
force formulae can be re-interpreted, unified, and sometimes
generalised.

I. INTRODUCTION

The existence of such a long controversy about the compu-
tation of electromagnetic forces and of so many uncertainties
among the practitioners is certainly to ascribe to the fact that
the issue cannot be completely clarified with the concepts of
Vector analysis only. The analysis of this problem requires to
consider a deforming body, and to apply energy conservation
rules to it. Whereas the mathematical issue has been addressed
by Alain Bossavit [1], [2], [3], [4], this paper provides to
those who cannot invest much time in a detailed study of
Differential geometry, the operative formalism that follows
from the theoretical discussion, i.e. the set of formulae leading
systematically from the very statement of the electromechan-
ical problem up to a practical implementation of a solution
method for it.

The first section states the transcription of the theoretical
results in terms of classical vector and tensor fields and
the co-moving time derivative of fields is introduced. This
transcription reveals that the electromechanical coupling term,
i.e. the volume density of mechanical power ρ̇W

em developed
by electromagnetic forces, can always be expressed in terms
of a stress tensor σem. The purpose of the paper is to describe
the procedure and the rules to determine in practical situations
the algebraic expression of this tensor.

The second section shows that all classical forces formulae
for rigid bodies or local forces, e.g. [5], [6], [7], can be derived
quite straightforwardly from the general principles stated in
the previous section, by choosing in each case a particular
velocity field. This is not only a backwards result but also a
solid departure point to tackle with more complex materials.
The case of nonlinear anisotropic material, e.g. iron or steel,
is treated in detail.

Finally, the third section, relying on the energy-based for-
mulation of the Maxwell system of equation presented in
[8], deals with the question of electromagnetic forces in the
presence of Joule losses, hysteresis and magnetostriction.

II. CO-MOVING TIME DERIVATIVE OF FIELDS

Each kind of field in a 3D space is inherently attached
to particular geometrical entities of the underlying manifold
(domain), either points, curves, surfaces or volumes. They
are accordingly named 0–, 1–, 2– or 3 form. When the
manifold flows or deforms with time, supplementary terms of
geometrical origin must be added to the partial time derivative.

Differential geometry tells that the time derivative Lv associ-
ated with the velocity field v describing the flow/deformation
is given, in terms of classical euclidian tensor analysis, by

Lv f = ḟ (1)
Lv h = ḣ + (∇v) · h (2)
Lv b = ḃ − b · (∇v) + b tr(∇v) (3)
Lv ρ = ρ̇ + tr(∇v) ρ (4)

respectively for 0–, 1–, 2– and 3–forms, where ż = ∂tz+v·∇z
denotes the total derivative of z(t, xk), applied component
by component if z is a vector field. Whereas (1) and (4) are
classical in fluid dynamics, where they are called material
derivatives, (2) and (3) are less often encountered and apply
precisely to electromagnetic fields. As the latter do not need
material support, Lv is called co-moving time derivative [9].

Considering now a material for which the electromagnetic
energy density is a function of induction and strain, ρΨ(b, ε)
(other dependencies do not affect the calculated forces), it will
be shown in the full paper that one has

ρẆ
em = −σem : ∇v (5)

with the Maxwell stress tensor

σem = b h̃ + ∂ερ
Ψ
− (h̃ · b − ρΨ)I (6)

defined as the factor of ∇v and h̃ ≡ ∂bρẆ
em. Note the use

of the dyadic (undotted) vector product (v w)ij = viwj , the
tensor product a : b = aijbij and the identity matrix I.

Equations (5) and (6) are the fundamental equations that
will be discussed in the full paper. It will be demonstrated
that the definition of forces for any kind of material reduces
to the correct (i.e. corresponding with reality) definition of the
energy functional ρΨ.
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