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Abstract

Purpose – Proposes a new quasi-static vector hysteresis model based on an energy approach, where
dissipation is represented by a friction-like force.

Design/methodology/approach – The start point is the local energy balance of the ferromagnetic
material. Dissipation is represented by a friction-like force, which derives from a non-differentiable
convex functional. Several elementary hysteresis cells can be combined, in order to increase the
number of free parameters in the model, and therefore improve the accuracy.

Findings – A friction-like force is a good way to represent magnetic dissipation at the macroscopic
level. The proposed method is easy to implement and non-differentiability amounts in this case to a
simple “if” statement.

Research limitations/implications – The next steps are the extension to dynamic hysteresis and
the in-depth analysis of the identification process, which is only sketched in this paper.

Practical implications – This vector model, which is based on a reasonable phenomenological
description of local magnetic dissipation, enables the numerical analysis of rotational hysteresis losses
on a sound theoretical basis.

Originality/value – It proposes a simple, general purpose macroscopic model of hysteresis that is
intrinsically a vector one, and not the vectorization of a scalar model.

Keywords Vectors, Modelling, Ferrous metals, Magnetism

Paper type Research paper

1. Introduction
Hysteresis models are generally compared on basis of their ability to reproduce
accurately the magnetic curves obtained by measurements. As standard
measurements of magnetic characteristics are done along a particular direction
(Single sheet tester and Epstein frame), it is not surprising that classical hysteresis
models are scalar as well. The model of Preisach (Mayergoyz, 1991) for instance, as it
offers a virtually infinite number of parameters, is able to reproduce accurately
one-dimensional hysteresis curves of many ferromagnetic materials.
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But when the question of losses and forces in the material arises, the accuracy of the
reproduced b-h curves is no longer a sufficient proof of a good representation of the
material’s behaviour. The model must provide in addition an energy balance of the
material. As the model of Preisach has no real interpretation in terms of energy, further
assumptions are required (Friedman and Mayergoyz, 1998; Delincé et al., 1994) if one
wants to use it in coupled problems.

The basic assumptions of the Jiles-Atherton model (Jiles and Atherton, 1986) on the
other hand, constitute a real material model with a true interpretation in terms of
energy. At a certain point in the development of the model however, algebraic and
differential operations are performed, which make loose track of the grounding energy
concepts. At the end, the model does not generalise naturally to two or three
dimensions of space and provides no energy balance of the material.

This paper presents an alternative hysteresis model which has similarities with the
one presented in (Bergqvist, 1997). It is based on the same basic assumptions as the
Jiles-Atherton model, but it remains up to the end consistent with the energy
interpretation. By this way, a vector hysteresis model for ferromagnetic polycrystals is
obtained.

2. Physics of ferromagnetism
2.1 Magnetic polarisation
Paramagnetic materials, in general, are characterised by the existence of permanent
atomic magnetic moments of amplitude mo [Am2], which are free to rotate, and to
orient in space, in function of several external and internal factors (applied field,
crystallographic structure, thermal agitation, . . .). Without applied magnetic field, the
distribution of the orientations is even, and the resultant polarisation is zero.

Let now H be the local magnetic field along a given direction, say H ¼ Hez: Each
individual magnetic moment can be associated an angle u with respect to that field and
an energy CðuÞ ¼ 2m0moHcos u: This notion of local magnetic field is somewhat
vague. It needs to be clarified further. Actually, different theories are based on different
definitions of the local field. For instance, the Weiss mean field theory (Jiles and
Atherton, 1983) assumes H ¼ hþ aM ; with h the real magnetic field and a a scalar
material constant. We shall use a ¼ 0 in this paper, but however notice that having
H – h is fundamental to the proposed hysteresis model.

The macroscopic magnetisation M of the sample is obtained by following an
approach à la Boltzmann. The energy of N moments contained in a volume V is given
by equation (1) in terms of the Boltzmann distribution (2) of the moments in function of
u (Sablik and Jiles, 1993):

VM ·H ¼

Z
V

CðuÞwðuÞ dV; ð1Þ

wðuÞ ¼ exp 2
CðuÞ

kBT

� �
;

Z
V

wðuÞdV ¼ N : ð2Þ

One has then

MðHezÞ ¼ Ms

R p
0 cos u wðuÞsin u duR p

0 wðuÞsin u du
ez ð3Þ
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with M s ¼ m0moN=V ½T� the saturation magnetisation and kB [J/K] the Boltzmann
constant. It can be noted that an increase of H is analogous in this theory to a decrease
of the temperature T. Performing the integral in equation (3), one finds

MðHÞ ¼ M sL
H

ho

� �
ez; LðxÞ ¼ coth x2

1

x
ð4Þ

with ho ¼ kBT=ðm0moÞ a characteristic field and L the Langevin function. This
constitutive relation is scalar and isotropic. It is characterised by a large initial
susceptibility and a saturation phenomenon when all moments become parallel to the
applied field. The coenergy density is

rFðHÞ ¼

Z jHj

0

M sL
x

ho

� �
dx; M ¼ ›Hr

F; ð5Þ

r X denoting in general the density of the quantity X. By definition, the energy
density is

rCðMÞ ¼
H

min{M ·H2 rFðHÞ}; H ¼ ›Mr
C: ð6Þ

As the developed model is a phenomenological one, any other function with the same
characteristics could be used as well. Figure 1 gives, together with the Langevin
function, three other candidates. For the sake of comparison, they are all scaled in such
a way that _Lð0Þ ¼ Lð1Þ ¼ 1: Except for the Langevin function, they are all invertible,
which gives practical advantages to express analytically the energy density by
equation (6) and to identify the parameters.

2.2 Ferromagnetic materials
The magnetisation of a ferromagnetic material (Fe, Ni, Co, . . .) is a more complex
phenomenon. Due to a strong short-range force of quantum origin, the atomic moments
tend also to align with each other. Due to the anisotropy of the crystal structure, they
moreover align preferably along a limited set of particular directions, called directions
of easy magnetisation of the crystal.

A very intense magnetic field would however be necessary to force all magnetic
moments of a ferromagnetic sample oriented in the same direction. In the absence of
such a field, the field lines close themselves preferably inside the magnetic material, so

Figure 1.
Four candidate functions

to represent
phenomenologically

anhysteretic
magnetisation
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that the sample divides itself spontaneously at a mesoscopic scale into a large number
of small regions called Weiss domains. Inside a domain, the magnetisation is kept
homogeneous by the short-range forces, but the orientation of the different regions are
distributed over the set of easy-magnetisation directions. If the amplitude of the
magnetic field increases, one observes that the domains with u < 0 ðcos u < 1Þ grow to
the expense of the domains with cos u ! 1:

However, isotropic polycrystalline materials, are agglomerates of monocrystals
oriented evenly in all directions, which homogenises the anisotropy properties of the
individual monocrystals. In such conditions, the approach of the previous section can
still be adopted, and the macroscopic magnetisation of the polycrystal is described by
equation (4), with an adapted value of the characteristic field ho.

The induction field is defined by

bðhÞ ¼ MðhÞ þ m0ð1 þ xÞh ð7Þ

assuming for generality the existence of a linear susceptibility of the material,
independently of the mechanism described in the previous section. With H ; h; this
relation represents the anhysteretic magnetisation curve of the ferromagnetic material.
We shall now introduce hysteresis.

2.3 Magnetic hysteresis
Two Weiss domains are separated by a thin transition region, called Bloch wall, where
the orientation of the moments changes smoothly from the orientation of the domain on
the one side to that of the domain on the other side. Magnetisation of a ferromagnetic
material implies the motion of the walls. The reversibility of the magnetisation process is
associated with the presence or not of inclusions and impurities in the crystal lattice.
Such defects constitute indeed small magnetic voids in the crystal structure. They pin
the Bloch walls at fixed positions because the magnetic energy is lower when the wall
goes through the void than when the void is inside the domain. In a perfect crystal, i.e.
without defects, the motion of the wall is smooth and there is no dissipation associated
with a quasi-static variation of the applied field. In a material with defects, each
configuration with a pinned wall corresponds with a local minimum of the magnetic
energy. When the material is magnetised or demagnetised, the walls jump abruptly from
one pinning site to the next one, hence the irreversibility and the hysteresis behaviour.

At the macroscopic scale, the microscopic configuration cannot be represented. The
pinning effect can be reasonably represented by a frictional force that impedes the
motion of Bloch walls and opposes to any change in magnetisation (Sablik and Jiles,
1993). If the magnitude of that friction force is k, the associated work 2kj _Mj is entirely
converted into heat.

3. Energy balance
All elements required to establish the energy balance of the ferromagnetic material are
now available. The first law of thermodynamics _rC ¼ _rW þ _rQ writes in this case

_rC ¼ h · _M2 kj _Mj ð8Þ

where _rW ¼ h · _M is the rate of work done by the applied field. As this relation must be
satisfied for any _M; equilibrium equations are found by factorising _M: In order to do
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so, non-linear functionals must be replaced by a first order linearised expression. Since
r C is in general differentiable with respect to M, one has simply _rC ¼ hr · _M; with
hr ; ›Mr

C: On the other hand, the functional kj _Mj at the right hand side of equation
(8) is not differentiable at _M ¼ 0: But, as it is convex, it has a subgradient G described
by

G ¼ {h i; jh ij # k if _M ¼ 0;hi ¼ ke _M if _M – 0}: ð9Þ

The equilibrium equation

h2 hr ¼ hi [ G; ð10Þ

is finally obtained. It determines in G (grey circle in Figure 2) the actual value of the
“friction force” hi:

hi ¼ h2 hr if jh2 hrj , k

hi ¼ ke _M if jh2 hrj ¼ k

8<
: ð11Þ

Equation (10) is the fundamental relation of the proposed vector model of hysteresis.
The magnetisation M is obtained by equation (4), with H ; hr and the induction is

bðhÞ ¼ MðhrÞ þ m0ð1 þ xÞh; ð12Þ

to be compared with equation (7). The dissipated power is hi · _M:
This model can be considered through the mechanical analogy of a spring

connected in parallel with a friction slider. Unlike the Jiles-Atherton model, which
decomposes the magnetisation into a reversible and an irreversible part, the applied
field h is in this model decomposed into the reversible part hr (non-linear spring force)
and the irreversible part hi (friction force), Figure 2.

The memory effect originates from the non-differentiable character of the functional
_rQ; as the latter implies the non-univocity of the friction force hi. The subgradient is
indeed a whole set of possible gradients, whereas a differentiable functional has one
and only one gradient at each point. If h is inside the circle, one has _M ¼ 0; which
implies _hr ¼ 0: The elongation of the spring does not change. In this way, the
non-univocity of hi makes it possible to maintain a given hr, and hence a given
magnetisation M, even when the magnetic field h has yet decreased, whence the
memory effect.

Figure 2.
Mechanical analogy and

pictorial representation of
the vector model
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4. Implementation
Like all hysteresis models, this model fits naturally into any magnetic field
formulation. From equations (11) and (10), e _M ¼ e _hr

; one can establish that the update
rule for hr obeys the differential equation in time

hr þ ke _hr
¼ h; ð13Þ

with the magnetic field h the input to the model. In practice, a simplified efficient
update rule for hr, as the unknown field h varies, is

jhnþ1 2 hn
r j . k ) hnþ1

r ¼ hnþ1 2 k
hnþ1 2 hn

r

jhnþ1 2 hn
r j
;

which ensures jh ij ¼ jh2 hrj # k at all time steps, but verifies only approximately
(13).

One sees that the non-differentiable character of the dissipation functional is only a
theoretical problem. It amounts to a simple test in the implementation. With first order
shape functions, the unknown field h is constant in each element and the hysteresis
algorithm requires to store the value of the vector hr for each ferromagnetic element. As
the update rule is a vector relation, it gives as such a vector hysteresis model, without
making any other assumption.

5. Combined model
In the elementary form presented so far, the model has only four parameters: Ms, ho and
x to represent the anhysteretic curve, and k to represent hysteresis. Although it gives
yet qualitatively interesting results for the main hysteresis loop (Figure 3), a better
representation of the material behaviour could require to dispose of a larger number of
free parameters. This can be achieved as follows.

The idea is to decompose the magnetisation M into different fractions M k that are
subjected to friction forces of different amplitudes k k. Let v k, k ¼ 0; . . . ; n withPn

k¼0v
k ¼ 1 be the fraction coefficients, so that Mk ; v kM. For each fraction, one

states that equation (10) remains valid, i.e.

h ¼ hk
r þ hk

i ; k ¼ 0; . . . ; n: ð14Þ

The energy balance of the fractions writes

Figure 3.
Measurement and model
for steel with the
elementary model
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h · _Mk ¼ hk
r · _Mk þ hk

i · _Mk ð15Þ

and making the sum on k, one obtains the global energy balance

h · _M ¼
Xn
k¼0

v khk
r

 !
· _Mþ

Xn
k¼0

v khk
i

 !
· _M; ð16Þ

from which follows

h ¼
Xn
k¼0

v khk
r þ

Xn
k¼0

v khk
i ; hk

i [ Gk; ð17Þ

which is the generalisation of equation (10).
The algorithm of the elementary model is applied to each fraction independently,

taking for each fraction the particular value of the friction force k k into account. Then,
the magnetisation M is obtained by equation (4), with H ¼

Pn
k¼0v

khk
r : The dissipated

power is ð
Pn

k¼0v
khk

i Þ · _M:
The combined model with nþ 1 fractions has 2nþ 4 parameters: Ms, ho and x for

the anhysteretic curve; k k, k ¼ 0, . . . ,n and v k, k ¼ 1; . . . ; n. It is relevant to reserve a
fraction with a zero friction force, say is k0 ¼ 0: The reversible magnetisation v0M
associated with this fraction represents the bending of the Bloch walls. The combined
model requires to store the value of the n vectors hkr per element.

6. Identification
As the model is throughout phenomenological, it makes sense to use it in a 3D model,
even when the parameter identification is done on basis of 1D measurements.

The identification of the parameters is done in two steps. The parameters Ms, ho and
x, are first fitted so as to place the anhysteretic curves in the middle of the main
hysteresis loop, Figure 4.

The parameters that remain to be identified are the fractions and v k their respective
friction forces k k, k 0 , · · · , kn: As the latter determine essentially the lag of the
magnetising field, i.e. hr, with respect to the magnetic field h, the identification is done
by considering the coercivity of the material.

On the one hand, the coercive field hcoer of the symmetrical loops is plotted in
function of the amplitude hpeak of the loops, Figure 5. On the other hand, the coercive
field from the model is obtained by setting

Figure 4.
Main hysteresis loop and
fitted anhysteretic curve
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M ¼ 0 )
Xn
k¼0

v khkr ¼
Xn
k¼0

v kðh2 hki Þ ¼ 0: ð18Þ

Let m(hpeak) be the higher fraction index for which k k , hpeak, which implies hki ¼ k k;
k # mðhpeakÞ. For the other fractions one has hkr ¼ h2 hki ¼ 0; k . mðhpeakÞ; so that the
sum (18) can be limited to:

XmðhpeakÞ

k¼0

v k

 !
h ¼

XmðhpeakÞ

k¼0

v kk k: ð19Þ

Finally, isolating h ; hcoer; one has

hcoerðhpeakÞ ¼

PmðhpeakÞ

k¼0 v kk kPmðhpeakÞ

k¼0 v k
: ð20Þ

This is a staircase shaped function. It suffices now to choose the parameters so as to
match as closely as desired the curve obtained from the measured hysteresis loops.
Figure 5 shows the match obtained with five fractions. Figure 6 shows the results
obtained in that case.

7. Conclusion
Unlike the models of Preisach and Jiles-Atherton, this model relies consistently on an
energy balance, of which all terms (stored magnetic energy and dissipated energy) are
known at all times. A material model for a magnetostrictive material with hysteresis
could so be obtained directly by substituting to r C a magnetostrictive functional.

Unlike the model of Jiles-Atherton, the number of parameters is not limited. The
combined model offers an arbitrary number of parameters. However, due to internal
constraints in the model, not all hysteresis curves can be matched exactly. Such a
limitation is comparable with the congruence property of the Preisach model
(Mayergoyz, 1991).

Dynamic effects can be considered by attributing a “mass” to the nodes in the
mechanical analogy. Anisotropy can also be considered by adding a weighting
function of u in equation (2).

Figure 5.
Coercive field hcoer in
function of the amplitude
hpeak of the symmetrical
hysteresis loops
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