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Abstract— A dynamical vector hysteresis model is presented,
which is a generalisation of a quasi-static model proposed in a
recent paper. The model can be considered from the point of
view of a mechanical analogy with the pinning of Bloch walls
phenomenon represented by a friction force. By combining
several elementary submodels with each other, the number of
parameter can be increased for a better accuracy.

I. INTRODUCTION

The quality of hysteresis models is generally assessed on
basis of their ability to reproduce accurately magnetic b-A
curves obtained from measurements. But, if one is interested
in the computation of losses or forces in a magnetic material
with hysteresis, the ability of matching b-h curves is no
longer a sufficient proof of the quality of the model. On
the contrary, a complete material model is required, which
is able to provide the different terms of the local energy
balance in the material and from which the constitutive laws
can be derived consistently.

The model of Preisach [1], for instance, has no real

interpretation in terms of energy, and further assumptions

are required if one wants to use it in coupled problems
[2][3]. On the other hand, the basic assumptions of the Jiles-
Atherton model [4] constitute a true material model with an
interpretation in terms of energy. However, at a certain point
in the development of the model, algebraic and differential
operations are performed, which make loose track of the
grounding energy concepts. At the end, the model does
not generalise naturally to 2 or 3 dimensions of space. Nor
provides it an energy balance of the material.

In a recent paper [5], an alternative hysteresis model
has been proposed, which is based on the same basic
assumptions as the Jiles-Atherton model, but remains all
through consistent with the energy interpretation. As it
is obtained directly from a complete material model, this
hysteresis models is readily a vector model, and it does not
need to be explicitly vectorized. In this paper, a dynamical
term is added so as to obtain a dynamical vector model.
The issue of the identitifation of the free parameters of the
model is also addressed.

II. ENERGY BALANCE

The proposed dynamic hysteresis model can be consid-
ered from the point of view of the following mechanical
analogy. Consider a object free to slide on a rough surface
and attached with a spring to a fixed point P. The whole
system is plunged in a viscous liquid. The object is sub-
jected to a known external force h, to the restoring force
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Fig. 1. Mechanical analogy and pictorial representation of the vector
model. The grey circle represents the subgradient G.

~h, of the spring and to a dissipative force —h;, which is
due to the friction on the plane and to the viscosity of the
fluid. The position of the object is denoted by the vector
M, M is the velocity. Inertia is neglected.

The differential equation ruling this system can be ob-
tained by a functional approach based on the the first law
of Thermodynamics p = 6% + 59, here written in terms
of power densities. The internal energy of this system is
the energy stored in the spring, which is a (singled valued)
function p : M — R. The power developed by the
external force h writes )% = h - M. One has

p (M)=h-M -k [M| - AM?, 1)

where the last two terms represent respectively the dissipa-
tion due to friction and the dissipation due to viscosity.

As this relation must be verified at any time whatever the
trajectory of the object, the equilibrium equation is found
by factorizing ML If p  is assumed to be differentiable with
Tespect to M, one has at the left hand side

p M) =h-M with h,=8yp (M). (2

At the right hand side, however, the dissipation functional
0% = kM| + A\M is not differentiable at M = 0, due to
the presence of the M| term. But, as it is convex, it has a
subgradient G defined by

G = {hy, [hy| <5 if M= 0,h; = & ey +AM if M # 0}

with ex = X/|X|, and represented by the grey circle in
Fig. 1. The equilibrium equation writes now

h-h,=h; €G. 4)

The memory effect originates from the non-differentiable

character of the functional [ M), as the latter implies the non-
univocity of the friction force h;. The subgradient is indeed
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a whole set of possible gradients (i.e. of possible forces),
whereas a differentiable functional has one and only one
gradient at each point. If h is inside the circle, one has
M = 0, which implies h, = 0: The elongation of the
. spring does not change. In this way, the non-univocity of
h; makes it possible to maintain a given h,, and hence a
given magnetisation M, even when the magnetic field h has
. yet decreased, whence the memory effect. :

III. ANALOGY

This mechanical model can be identically translated into
_ an analogous model for ferromagnetic materials with hys-
teresis. The vector M is now the magnetisation of the
- material (in Tesla). The applied force h is the magnetic
field. The friction force h; originates from the pinning
of Bloch walls phenomenon (main cause of the magnetic
hysteresis) and from the viscosity force due to the induction
of eddy currents in the material when the magnetisation
varies in time. Both dissipative forces have the dimensions
of a magnetic field.
Similarly to the Jiles-Atherton model, the magnetisation
M is obtained by the Langevin model
M(h,) = ML ((:’11_7"!) en. , L(z)= cothx—%, 5)
and the induction is b(h) = M(h,) + poh. The dissipated
power is h; - M. Unlike the Jiles-Atherton model, for
which the magnetisation is decomposed into a reversible
and an irreversible part, the applied field h is in this model
decomposed into the reversible part h,. (nonlinear spring
force) and the irreversible part h;, Fig. 1.

IV. IMPLEMENTATION

Like any hysteresis models, this model fits naturally into
a magnetic field formulation. Knowing h and the definition
(3) of the subgradient, which is the set of possible values
for h;, different update rules for M can be devised, with
different level of accuracy, as detailed in the full paper. The
non-differentiable character of the dissipation functional is
only a theoretical problem. It amounts to a simple test
in the implementation. With first order shape function,
the unknown field h is constant in each element and the
hysteresis algorithm requires to store the value of the vector
M for each ferromagnetic element. As the update rule is a
vector relation, it gives as such a vector hysteresis model,
without making any other assumption.

V. COMBINED MODEL

In the elementary form presented so far, the model
has only four parameters: M, and h, to represent the
anhysteretic curve, x and A to represent hysteresis. Although
it gives yet qualitatively interesting results for the main
hysteresis loop, a better representation of the material
behaviour requires to dispose of a larger number of free
parameter. This can be achieved as described in [5]. Fig. 2
shows the match obtained between the model and quasistatic
measuremnients.
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Fig. 2. Measurements (above) and model (below) with 5 fractions for
electrical steel.

CONCLUSION

Unlike the models of Preisach and Jiles-Atherton, this
model is readily a vector model and the differents terms of
the local energy balance of the material (stored magnetic
energy, dissipated energy) are known at all times. Unlike
the model of Jiles-Atherton, the number of parameters
is not limited. The combined model offers an arbitrary
number of parameters. However, due to internal constraints
in the model, not all hysteresis curves can be matched
exactly. Such a limitation is comparable with the congruence
property of the Preisach model [1]. A material model for
a magnetostrictive material with hysteresis could so be
obtained directly by substituting to p a magnetostrictive
functional.
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