Abstract— A formulation of electromagnetic problems in con-
tinuous media is proposed, which relies on a clear identification
of the different existing electromagnetic energy reservoirs and
the flows between them. A rich structure is revealed, which
constitutes a natural framework to establish the differential
and finite element equations describing a given problem. This
formulation, which unlike Maxwell’s equations integrates also
material aspects, clarifies several issues related to dissipative and

coupled phenomena in magnetic materials,

I. INTRODUCTION

Maxwell’s equations are generally presented as the funda-
mental set of equations ruling all electromagnetic (EM) phe-
nomena. However they address only a part of the question, as
they need to be complemented by constitutive laws. Moreover,
such a splitting of the problem into a material part and a
non-material part is done at the cost of a series of conditions
that are scarcely stated explicitly and have however important
implications.

I1. THEORETICAL SETUP

The theoretical framework we need relies upon two man-
ifolds with distinct functions: the material manifold M of
which each point is associated with a material particle of the
continuous medium (e. g. an atom), and the Euclidean space F/
which represents the space where the motion takes place and
which is a manifold where a metric has been defined.

In order to describe a possible movement or deformation
of the system, the placement mapp : XeMm-g=
peX € E is defined. It is a map that associates its position
in E to each material particle X € M at all instants of time
t € [ta,tp]. The codomain of the placement map, Q = p, M,
is the deformed state. On the other hand, the codomain of
the map ¢ € [ta,tp] — z = X € E is the trajectory of
a_particular material particle X (Fig. 1). The velocity field,
v = Gz (vectors in E are denoted with a bold letter), is the
field of tangent vectors to all trajectories of the flow at a given
instant of time,

The placement p; is assumed to be regular and invertible
at all ¢. It induces a 1-1 mapping, also noted p;, of all vector
and tensor fields defined on M to the corresponding fields
defined on E. If quantities defined on M are denoted with an
uppercase symbol, and quantities defined on E are denoted
with a lowercase, one has nZ =z

Electromagnetic fields are by definition differential forms
defined on M. Unconventionnally, this approach is not in
terms of the classical h,b,e and d fields, but in terms of
the electric scalar potential U (0~form), the magnetic vector
potential 4 (1-form), the electric displacement D (2—form)
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Fig. 1. Placement map at two instants of time and the trajectory of X in .

and the current density .J (2~form). Finally, the magnetic field
Hjy on the boundary OM of M is also required as a variable,
S0 as to complete the boundary conditions,

The metric on E allows to attribute an intensity to the
fields defined in M, thanks to pe. For instance, the magnetic
flux density writes dA in M , since the exterior derivative d
is the differential geometry equivalent of the curl operator,
ie. prdA = curla. It associates a flux ¢ (in Weber) to
any infinitesimal material surface ¥ in M. But one needs
the measure of p,¥ in E, and hence the metric on E, to-
determine the intensity of the field ¢/measure(p;X). The
magnetic energy density is thus a function of curla (not of
dA), and of possible other arguments like temperature, strain,
etc. If the magnetic energy is noted ¥ M and its corresponding
density p}f’l (the density of any quantity X is denoted p*), one
has

Upr(curla, ...) E/Qp}{}(curla,...) = (7 a)(d4, ..

Again, p; gives the expression of the energy in M corre-
sponding to the one given in E. Details will be given in the
full paper. Identical considerations apply to the electric energy
Uge(d,...).

IIT. EM ENERGY FLOW DIAGRAM

The topology of the EM energy flow diagram, as depicted
on Fig. 2, is a square with at each corner a reservoir associated
with a particular field, resp. A,D,J,U from the upper left to
the lower right corner. The A—reservoir and the D—reservoir
contain resp. magnetic and electric energy. The J—reservoir
contains the kinetic energy of the charge carriers. Let M,
denote the mass of one charge carrier and Q, its charge. If
pc is the density of charge carriers, which we shall assume
constant, and v, their velocity field in E, the current density
is j = Qcpeve. The kinetic energy density writes then p¥ (j) =
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Fig. 2. EM energy flow diagram in the material manifold M.

lﬁmﬁvaXha‘n

fohi-cullya
? - Yyleurla,...)

Jod-£Lya

Jolvd-L,a

JoLvd - gradu

O
!

JopuG+L,d).

Fig. 3. EM energy flow diagram in the euclidean space E.

PeMcv2/2 = 0j?/2 with o = M./(p.Q?). Finally, the
U—reservoir is always empty. ’

The reservoirs exchange energy with each other by means
of internal energy flows, which are completely determined by
the knowledge of A, D, J and U. They can also exchange
energy with the exterior, either through the surface of the
system (surface terms at nodes A and [J ) or by bulk dissipation

(black-headed arrows).

IV. CONSERVATION EQUATIONS

As the fields A, D, J and U are independent of each other,
they can be varied freely in order to obtain, by a simple
variational argument, the conservation equations implied by
the structure of the EM energy flow diagram. Before doing so,
however, the whole structure is mapped into E, thanks to the
placement map p;, so as to obtain the equations, not in tems
of differential forms, but in terms of the corresponding scalar
and vector fields. In the mapping process, the commutation
property p;0; = Ly p; is used, where £, is the material
derivative. The dissipation functions have also been given more
familar expressions, which are not restrictive (See Fig. 3): h;
is a function of £, curl a, e; is a function of £, d.

In €, the consefvation equations obtained by varying the
four independent fields a, d, j and u write respectively

curl {8bp}{’,[(curla) + hi} = j+L,d €))]
dapp(d)+e; = ~Loa— du 2

o lj+aly,j = —L,oa- du 3)

0 = div(j+£,d) @
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complemented with the boundary condition hs=h,+h; on
0. Note that in the absence of motion, v = ( and L, = 4,

V. DISCUSSION

This approach gives back to the material manifold its
fundamental and unique place in the theory. Relativity is still
an issue but it applies only to the choice of the referential inE.
Constitutive laws are defined by giving analytic expressions for
the energy functions ¥ x in and the dissipation functions Qx.
Of course, the conservation equations (1-4) do not contradict
Maxwell’s equations, but they are more detailed. All terms
have a clear physical meaning in terms of energy or energy
transfer. The different regimes (Magnetostatics, Electrodynam-
ics,...) are readily characterised by cutting off one or several
reservoirs in the diagram,

Motion terms like v x b are explicitly present by virtue of
the material derivative, and need not be introduced on basis
of a foreign relativistic argument. The definition of EM forces
[1], [2] is now an immediate and obvious consequence of
the structure of the diagram. The expression of the material
derivatives of the different kind of fields will be given in the
full paper.

Comparison of Ampere’s law with (1) shows that, in
the presence of dissipative phenomena, the magnetic field
h decomposes actually into a reversible part O pjy(curl a)
which accounts for the magnetisation phenomenon (alignment
of microscopic magnetic moments), and an irreversible part
h;" which accounts for the local dissipation process. The
magnetic field h, as well as the electric field e, is thus a
composite container for phenomena of different natures. This
quite clarifies the issue of hysteresis modelling [3].

Equation (4) is redundant with (1) as a consequence of the

- fact that the u—reservoir is empty. In practice, the j—reservoir

can also be considered as empty, due to the very small value
of o and the corresponding term in (3) can be disregarded.
However, in superconductors, for which o is infinite and
grad u is zero, (3) reads a = —aj, which is London’s model.
That term is also at the root of the definition of the static
charges on the boundaries of current carrying conductors [4],
which can be evaluated by goaly, j-n. :

VI. CONCLUSIONS

The proposed energy-based approach considers the prob-
lem of electromagnetism in a continuous medium in all its
generality. Material aspects are integrated, not under the form
of constitutive laws, but in terms of energy and dissipation
functionals. With the obtained energy diagram, several issues
related with the interaction of EM fields with matter (hystere-
sis, forces, superconductors, ...) find a clear explanation and

a natural theoretical framework.
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