
1508 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 5, MAY 2005

An Effective Reluctivity Model for Nonlinear and
Anisotropic Materials in Time-Harmonic Finite

Element Computations
Hans Vande Sande1, François Henrotte2, Herbert De Gersem3, and Kay Hameyer2

Atlas Copco Airpower n.v., Airtec Division, Boomsesteenweg 957, B-2610, Wilrijk, Belgium
Rheinisch-Westfälische Technische Hochschule, Institut für Elektrische Maschinen, D-52056 Aachen, Germany
Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, D-64289 Darmstadt, Germany

In time-harmonic finite element analysis, the nonlinear behavior of soft-magnetic materials is often modeled by effective reluctivity
curves, to account for the time-dependence of the reluctivity during one cycle of the applied sinusoidal signal. In this paper, the effective
reluctivity concept is generalized in such a way, that nonlinear and anisotropic materials can be modeled as well. The model is used to
simulate the flux line distribution and the loss distribution in a three-phase transformer under no-load operation.

Index Terms—Anisotropic media, finite element methods, harmonic analysis, nonlinear magnetics.

I. INTRODUCTION

THE governing equation of a magnetodynamic problem is

(1)

where is the reluctivity tensor [m/H], the magnetic vector
potential [Tm] and the current density of the externally ap-
plied current sources [1]. In a time-harmonic formula-
tion, the magnetic vector potential and the current density are
supposed to vary sinusoidally. This means

(2)

(3)

where the variables and are vectors with
phasor-valued components, represented by complex numbers.
Introducing (2) and (3) in the magnetodynamic equation (1)
yields the governing equation of the time-harmonic problem

(4)

Since the reluctivity tensor entries may be complex-valued1 as
well, the tensor is indicated by .

When considering two-dimensional (2-D) problems, the
time-harmonic equation (4) transforms into

(5)

Digital Object Identifier 10.1109/TMAG.2005.845077

1The term phasor-valued and the corresponding notation with a tilde is re-
served for complex-valued quantities that represent sinusoidally varying quan-
tities. All other complex-valued quantities are underlined.

where is defined by

(6)

being a reordering of the reluctivity tensor

(7)

The magnetic flux density then equals

(8)

II. SYSTEM EQUATIONS

When applying the finite element method for numerically
solving (4) or (5), one basically has to solve the following al-
gebraic system of complex equations:

(9)

where , , and represent the diffusion term, the Helmholtz
term and the source term, respectively. Vector refers to the
residual vector. The system (9) is nonlinear, due to the depen-
dence of on . Since the entries of the reluctivity tensor may
be complex-valued, the entries of the stiffness matrix may be
complex-valued as well. By splitting into its real and imagi-
nary part

(10)

the system (9) transforms into

(11)

It can be iteratively solved using the Newton–Raphson method
[2], [3].
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III. EFFECTIVE RELUCTIVITY TENSOR MODEL

A. Phasor-Valued Flux Density

In time-harmonic simulations, the flux density is a vector with
phasor-valued components, according to (8). The knowledge of

is required to evaluate the reluctivity tensor. Considering
in time-domain

(12)

yields

(13)

(14)

(15)

(16)

Obviously, generally describes an elliptic locus in in the
plane. Hence, a phasor-valued vector potential solution

allows for a variety of alternating and rotating fluxes in each fi-
nite element. This information has to be processed by a material
model to obtain the time-harmonic reluctivity tensor entries.

B. Generalized Effective Reluctivity Concept

When applying an elliptically shaped -locus to a nonlinear
and/or anisotropic material, it is observed that the measured

-locus is generally not elliptic. In time-domain analysis, such
behavior is modeled using a time-varying reluctivity tensor.
Since this is impossible in time-harmonic analysis, one must
approximate the relation between and . The quality of the
approximation is influenced by the following factors:

• Nonlinearity. If the materials are isotropic, an effective
magnetization curve is usually extracted from the mea-
sured magnetization curve by an averaging rule based on
integration [4]–[6]. Depending on the type of averaging,
significant differences are observed in the saturation level
of the effective magnetization curve.

• Rotational fluxes. These averaging techniques implicitly
suppose that or are sinusoidally alternating along
a line. This assumption is valid in the major part of an
induction machine e.g., but it is not necessarily true in the
region between teeth and yoke [7]. Since averaging the
reluctivity is not required for circular fluxes, additional
errors are introduced in the analysis if such an effective
magnetization curve is used for rotational fluxes as well.

• Anisotropy. If an elliptical -locus is applied to a non-
linear and anisotropic material, it is observed that the
shape of the -locus depends on the angle between the
principal axes of the material and the ellipse [8].

The idea behind effective magnetization curves can be general-
ized, taking into account these items. E.g.,

(17)

with

(18)

Fig. 1. Real part of the effective reluctivities � and � [10 m/H] as a
function of the aspect ratio a [�] and the inclination angle  [ ] of the ~B-locus,
for (a) j ~Bj = 0:55 T, (b) j ~Bj = 1:38 T and (c) j ~Bj = 1:93 T.
The imaginary parts are zero for lossless models.

the aspect ratio of the ellipse and and the
lengths of the principal axes of this ellipse.

C. Example: Exclusion of Losses

To illustrate the individual role of the dependencies in (17),
the static nonlinear and anisotropic reluctivity model in [9]
is considered here for extracting a time-harmonic anisotropy
model that excludes losses. Since loss data are not available,
the arguments and of the complex-valued reluctivity
tensor entries are set to zero. For a large set of parameters

, the effective reluctivity tensor entries are com-
puted as the average value of and over one period of
the -locus. Fig. 1 shows the entries of at

, and .
The scales are not equally set, to better observe some details.
The following general conclusions can be drawn:

• If increases, the reluctivity tensor entries increase
as well, since the material is operated closer to the satura-
tion level.
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Fig. 2. Moduli � and � [m/H] of the reluctivity tensor entries as a function
of the aspect ratio a [�] and the inclination angle  [ ] of the ~B-locus, for
j ~Bj = 0:5 T (thin solid line) and j ~Bj = 1:0 T (thick solid line).

• If , the -locus is circular and is independent of
.

• If is small, the longest axis of the ellipse is close to
the rolling direction and decreases with decreasing

, since decreases as well. However, if in addi-
tion is very small, it is expected that starts in-
creasing again when approaches zero, because the ma-
terial is operated in the Rayleigh region there.

• If is close to 90 , the longest axis of the ellipse is close
to the transverse direction and the same behavior as in the
previous item is observed for .

• If is close to 90 and is close to zero, the -locus
is almost linearly shaped and parallel to the transverse
direction. As a consequence, takes up a high value
there. When starts growing, initially decreases due
to the increasing component of in the rolling direction.
When approaches unity, may increase again, pro-
vided is high enough to attain the saturation level.

• If and are close to zero, the same behavior as in the
previous item is observed for .

• If is small, the -locus is almost linearly shaped and
generally increases with , while generally decreases
with .

Neglecting one of these dependencies may have a considerable
influence on the accuracy of the solution, even for isotropic ma-
terials where and are the only parameters.

D. Example: Inclusion of Losses

In [8], it is described how , , , and can be de-
termined from measurements in the rolling and transverse direc-
tion of grain-oriented silicon steels, by processing the measured
signals in the frequency domain. The measurements have been
performed at 50 Hz on a square grain-oriented silicon steel sheet
M111-35N of 80 mm length and 0.35 mm thickness.

The data in Figs. 2 and 3, respectively, represent the modulus
and the argument of the complex reluctivity tensor entries, as
measured in [8]. Although they only partially describe the rela-
tion , it is observed that Fig. 2 exhibits a similar
behavior as the one shown in Fig. 1. By comparing Figs. 2 and
3, it is concluded that and are much less sensitive to
and than and .

Fig. 3. Arguments� and� [ ] of the reluctivity tensor entries as a function
of the aspect ratio a [�] and the inclination angle  [ ] of the ~B-locus, for
j ~Bj = 0:5 T (thin solid line) and j ~Bj = 1:0 T (thick solid line).

Fig. 4. Flux line distribution obtained with the time-harmonic real-valued
anisotropy model in Fig. 1, if the initial phase angles of the currents in the coils
are �85 , 35 , and 155 , respectively. The flux density in the middle limb is
approximately 1.38 T.

Fig. 5. Some flux density loci in the region close to the joint between the
middle limb and the yoke of the transformer.

IV. SIMULATIONS

A. Example: Exclusion of Losses

The real-valued time-harmonic anisotropy model plotted in
Fig. 1 is now used for simulating the no-load condition of a
three-phase transformer. The flux line distribution, when the
initial phase angles of the currents in the coils are , 35 ,
and 155 , respectively, is plotted in Fig. 4. Fig. 5 shows some
of the computed flux density loci in the region close to the
joint between the middle limb and the yoke of the transformer.
Rotational magnetization occurs close to the joints of the
transformer, in contrast to the rest of the transformer where
alternating magnetization prevails. The specific energy losses
[W/kg] [10] in each finite element

(19)
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Fig. 6. Flux line distribution obtained with the time-harmonic complex-valued
anisotropy model in Figs. 2 and 3, if the initial phase angles of the currents in
the coils are �85 , 35 , and 155 , respectively. The flux density in the middle
limb is approximately 1.17 T.

Fig. 7. Loss density distribution in the T-joint, obtained when simulating with
the time-harmonic complex-valued anisotropy model.

where is the specific mass of the material kg/m , are zero
here, but they can be estimated in a post-processing step by ap-
plying the obtained -loci to the input of some more advanced
loss and/or hysteresis models.

B. Example: Inclusion of Losses

The three-phase transformer is now simulated using the com-
plex-valued reluctivity tensor model in Figs. 2 and 3. Since these
data are not related to those used in the previous analysis, the re-
sults cannot be compared. Fig. 6 shows the flux line distribution.
It has to be assumed that all -loci are circular, i.e. and

irrelevant, for determining the value of the reluctivity tensor
entries, since too limited data are available. More data are re-
quired to perform a more accurate simulation.

Here, the use of a complex reluctivity tensor allows to esti-
mate the specific losses in each finite element, by computing
(19). This is shown in Fig. 7 for the region around the T-joint.
Three loss peaks are observed. The two largest peaks are due
to the elevated flux densities in the corners of the T-joint. The
smallest peak occurs on top of the limb, where the magnitude of
the flux density is smaller. However, in this area, rotational fields
are prevalent. Hence, this peak indicates the increased losses due
to rotational magnetization.

V. CONCLUSION

Time-harmonic analyses are useful for simulating the steady
state operation of a device. This is particularly attractive in the

early design stages of new devices, since the main parameters
can be extracted quickly. However, when compared to transient
analysis, additional errors are introduced, since the time-vari-
ation of the reluctivity tensor over one period cannot be mod-
eled as such. In this paper, the traditional concept of using ef-
fective reluctivity curves for time-harmonic analyses, is general-
ized. The generalization is based on the properties of the elliptic
path the flux density vector describes in each finite element. The
approach can be used for modeling nonlinear and anisotropic
materials. Losses due to hysteresis or rotational fields can be
implicitly included, by allowing the reluctivity tensor entries
to have complex-valued entries. Two examples are presented in
order to illustrate the anisotropic and lossy character of the solu-
tion. Additional research should be performed on the averaging
rules and on the practical extraction of all the required data, in
order to fully assess the capabilities of this technique.
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