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Abstract The finite element (FE) method calculations ave used to improve dynamic behavior of
the two-axis linear synchvonous reluctance motor (LSRM) model, which is appropriate for the
control design, the real time applications and the low speed servo applications. By the FE method,
calculated current and position dependent flux linkages, their partial derivatives and motor thrust
are approximated by the continuous functions and incorporated into the dynamic LSRM model as
a nonlinear iron cove model The agreement between the calculated and the measured flux
linkages, their partial derivatives and the motor thrust is very good. The agreement between all
trajectories calculated by the improved dynamic LSRM model and measured during the
experiment tn the case of kinemaltic control is very good as well.
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1. Introduction

The finite element (FE) method can provide us with a very accurate
distribution of magnetic fields and forces in an electric machine. Unfortunately,
the FE models of electric machines are too complex to be appropriate for
control synthesis and too time-consuming to be appropriate for the real time
applications. On the contrary, the two-axis models of electric machines are not
time-consuming and compact, therefore they are appropriate for the control
design and real time applications. In two-axis models, magnetic saturation,
anisotropy, cross coupling effects and position-dependent force pulsation are
normally neglected, which means that only the average value of the force and
magnetically linear iron core model are available. In the case of kinematic
control at very low speeds and in the case of saturated machine where changes
of controlled currents are high and fast, this is not sufficient. In these cases, the
magnetically nonlinear model of the iron core and position-dependent force
pulsation must be considered in the control synthesis and in the real time

application.
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magnetic fields and forces,
This work deals with the linear synchronous reluctance motor (LSRM)

rototype (Hamler ef al, 1998). The LSRM almost always operates under
transient conditions because the translation range of motion is limited. Its

filtered out at high speeds. At low speeds, the thrust pulsation cannot be
filtered out and it deteriorates the speed trajectory.

The dynamic model of the LSRM presented in this paper is appropriate for
the nonlinear control design and real time realization of low speed servo
applications:

(1) for the control design only dynamic models with linear independent state

variables are appropriate, where the magnetic nonlinearities are given
by continuous functions of state variables;

(@) for the low speed servo applications the position and current dependent
motor thrust characteristic must be known very well;

3 only dynamic models which are compact and fast enough to be
calculated together with a control algorithm on a digital signal processor
(DSP) in the real time are appropriate for the real time realization.

(1) the two-axis LSRM model oriented with the axes of the minimal and
the maximal reluctivity is used;
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(2) the anisotropic iron core model, which differs from the known
models (Boldea and Nasar, 1988; Iglesias et al, 1992; Levi, 1999;
Tahan and Kamwa, 1995), is given by the current dependent flux
linkages and their partial derivatives;

(3) additionally, the current dependent flux linkages and position and
current dependent motor thrust are approximated by the continuous
functions in the entire operating range.

The procedure for the calculation of the flux linkage and the motor thrust
characteristics of the two-axis LSRM model is presented in this paper. The
two-axis LSRM model with lumped -parameters is modified. The current
dependent flux linkages, their partial derivatives and the position and current
dependent thrust are introduced. Their characteristics are calculated by the
FE method, approximated by the continuous functions, compared with the
measured ones and incorporated into the two-axis LSRM model. The obtained
LSRM model contains adequately coupled models (parameterization coupling
(Srairi and Féliachi, 1998)) of the electric, magnetic and mechanical subsystem,
to be appropriate for the control design and real time realization in the low
speed servo application. The proposed LSRM model is confirmed through the
comparison of simulation and measured results obtained in the case of
kinematic control. The presented results show very good agreement between
all calculated and measured trajectories. Even the deterioration of the LSRM
speed trajectory caused by the thrust pulsation, which is difficult to obtain with
existing two-axis LSRM models, can be seen.

2. Two-axis LSRM model
The direct axis d and the quadrature axis g of the two-axis LSRM model are

defined by axes of the minimal and the maximal magnetic reluctance. The
two-axis dynamic LSRM model is given by equations (1) and (2):

Ug 14 W _'/’q
d dx
=R\ +a¥ +—7-T—a? @
Ug g ‘1[’11 p 17
dx . dx 9
maﬁ—F(zd,zq,x)—Fl—ba? 2)

where iy, g, 14, 1q and g, Y are the voltages, currents and flux linkages in the
d-q reference frame; R is the primary resistance; 7, is the primary pole pitch;
m and x are the mass and the position of the primary; F' is the motor thrust;
F, is the load force and b is the coefficient of viscose friction.

For the control purposes the LSRM thrust is normally calculated by:
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providing only the average value of the current and position dependent thrust,
which is unacceptable for the low speed servo applications.
The time derivatives of the flux linkages in equation (1) can be expressed by:

W Oy Oty
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The magnetic subsystem of the LSRM couples the electric subsystem (1) and
the mechanical subsystem ). The magnetically anisotropic behavior of the
LSRM iron core is considered by the current dependent flux linkages
Wa(a,tq,%) and Yy(t4,14,%), their partial derivatives and the current and
position dependent thrust F (4,14, %), which are all determined by the FE
method based procedure described in Section 3.

The two-phase dynamic LSRM model given by equations (1), (2) and (4) can
be used if the instantaneous values of phase voltages u,, u, u,, phase currents
La» Up, i, and phase flux linkages 4, s, and Y. of the tested LSRM fulfill the
following conditions: #, -+ up +ue = 0,1, +14p +i, = 0 and ¢, + U+ ¢, = 0.

3. FE calculation

The primary of the LSRM has a three-phase winding with geometric symmetry
per phase, used to create the traveling field on the primary whose poles are
asymmetric. The primary slots are not skewed. The last five slots on the right
and left side of the primary shown in F igure 2 are only half filled, which causes
the asymmetric distribution of the magnetomotive force (mmf) on the primary.
The secondary of the discussed LSRM has a multipole structure and is
composed of magnetically salient segments (Hamler ef al,, 1998). The length of
the segment is equal to the primary pole pitch. By putting segments together,
any length of the secondary can be obtained. Each segment consists of
semicircular lamellas cut out from electrical steel sheet. A filling is used to
make the segment compact. The secondary segment shape is presented in
Figure 1.

The magnetic conditions in the LSRM were computed by 2D FE method
using the basic equation:

rot (v rot(4)) =] )

where v denotes the reluctivity, A is the magnetic vector potential and Jis the
current density. The LSRM thrust was calculated by the Maxwell’s stress

3) Nonlinear mc
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Figure 1.
Shape of secondary
segments

Figure 2.

Magnetic field
distribution.

(a) Excitation in d-axis
ig=40A, i;=0A,;

(b) excitation in g-axis
ig=0A, i, =40 A (the
direct axis is collinear
with the magnetic axis of
the a phase winding)

tensor method using the integration path in the middle of the air-gap. The
shape of the primary and secondary, and magnetic field distribution are
presented in Figure 2. Because of the magnetic asymmetry (asymmetric mmf
on the primary), the total length of the primary is included in the magnetic field
calculation. The end winding leakage effects are not considered in the 2D FE
calculations. These effects could be considered in the 3D FE models, which are
in the case of tested LSRM too huge and too time-consuming to be used. The 3D
FE calculations have not been performed because the 3D FE packages, which
are able to handle 3D FE models of the LSRM in the size of a few 1,00,000
elements and to perform 2,592 calculations (36 combinations of currents #; and
1, In 72 different positions) in acceptable time, are not available to the authors.
The 2D FE model of the LSRM for the entire length of the primary contains
more than 20,000 elements. ‘
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Indeed, the results obtained by the 2D FE computations might be less accurate Nonlinear mode]

than the ones obtained by the 3D FE computations, but they are still relevant
enough to substantially improve dynamic behavior of the two-axis LSRM
model.

The 2D FE method based procedure for the determination of current and
position dependent flux linkages (i, Lg, %), Yy, ig,x) and thrust F(j,, lg, X)
of the two-axis dynamic LSRM mode] is described in the following steps.

Step 1. The FE model of the LSRM cannot be directly supplied by
the instantaneous values of currents tq and ,, which are state variables of the
two-axis dynamic LSRM model. Therefore, for the given position x and model
currents 7, and i, the instantaneous values of the phase currents ¢, 4, and 4,
required in the FE model are calculated by:

’— cos(0) —sin(®) \/72
Iy A s /3 ig
: P T . T :
Z‘b =1/3 cos <® + —3—) —sin <® + ?> 5 z.q (6)
1 ]
27 . 2w\ 2
cos (® + ?> —sin <® + —3—) TJ

where © = (77/ Tp)x and 7, equals zero due to the Y connection.

Step 2. For the given position and phase currents, equation (5) is solved
numerically.

Step 3. The thrust is calculated by the Maxwell’s stress tensor method. The
phase flux linkages are calculated from the average value of the magnetic
vector potential in the primary slots according to the winding arrangement.

Step 4. The model flux linkages i;(7,, iq,x) and i, 31y, lg,%) are calculated
from the phase flux linkages applying the inverse transformation used in
equation (6).

Step 5. The procedure proceeds with Step 1 for a new set of «, 1, and 1, until
calculations are performed in the entire operating range.

Both flux linkages, (i, ig,x) and ¢, Gy, lg,%), are averaged over two pole
pitches because they change just slightly with position at constant 1 and i,.
The averaged flux linkages Yiliayiq), Wy(ig,i,) and the current and position
dependent thrust F\ (14,14, %) are approximated by the continuous functions in
the entire operating range and then incorporated into the dynamic LSRM
model. The flux linkages are approximated by equation (7) and the thrust by
equation (8):

— _ _ —Aqv —4,
f(u7 U) — (Cle A10+C2e sz)e (Cse™ 3" 4-Cye™ 44y
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Figure 3.

LSRM thrusts given over
one pole pitch.

(a) Measured;

(b) calculated by the
Maxwell’s stress tensor
method

. .o C e ... (12
F(ig,iq,%) = folig,iq) + f1Gq,19)sin(Bx) + f2(ia, ig)sin (——wa>
D

+ fats ipsin (275 ) ®
/ Tp
where ;(ig,1q), Wala,ig) and fo(ig,ig) through f3(ig,1,) have the same
structure as A, v) (equation (7). The parameters C; through Cg, A; through Ag
and B were determined by the Nelder-Mead simplex direct search method
(Nelder and Mead, 1965) and the differential evolution (Storn and Price, 1996).

4. Results ,
The comparison of the measured LSRM thrust and that derived from the

Maxwell’s stress tensor method is given in Figure 3 over one pole pitch for
different constant currents #; and 7,. The agreement between the measured and
the calculated results is very good.

i,=10A,i;=30A i,=20A,i;=30A

1300

b) 00 20 40 60 b) 0 20 40 60
x [mm] x [mm)]
i,=10A,i,=40 A i, =20A,i,=40A
1300 4 . qi M 1600 ¢ M qi M
z 1350
Iz
a) 1100
1600 N N N
&,
by % 20 40 60 b) 1005 20 40 60

x [mm] x [mm]

The
app
par
Syst
(Sau

v, Vel

a)

w, [Vs)

b)

v, [Vs]

c)




127 )
X
Tp

®

ave the same
Ay through Ag
search method
1d Price, 1996).

ived from the
pole pitch for
 measured and

ij=30A

A comparison of the measured, FE method calculated and continuous Nonlin

functions approximated flux linkages and their partial derivatives is given in
Figures 4-6. The partial derivatives of the measured and FE calculated flux
linkages are approximated by differential quotients (9) for each set of i; and Ly,
while the partial derivatives of the continuous functions are determined
analytically.

. 9
0 Ay 9y Ay, 9l Ay o1, Ai, ©

The agreement among measured, calculated and continuous functions
approximated flux linkages and their partial derivatives is very good. The
partial derivatives are close to satisfying the condition for the conservative
system without any loss of energy in the iron core: Aty /8ig = 3y /iy,
(Sauer, 1992).

€ar mode

Figure 4.

Flux linkages i,
and t,. (a) Measured;
(b) calculated by the
FE method; and

(c) approximated by
continuous functions
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Partial derivatives
iy /dig and 34y /dig.
(a) Measured;
(b) calculated by the FE
method; and

(c) approximated by
continuous functions

)

FE calculated and continuous functions approximated flux linkages (Walia,iq)
and y,(i4,1,)) and LSRM thrust Flig, ¢4, x) wWere incorporated into the dynamic
LSRM model. Figure 7 gives the comparison of trajectories measured during
the experiment and calculated by the proposed dynamic LSRM model in the
case of kinematic control. The agreement of all trajectories is very good. The
influence of the position dependent thrust pulsation on the trajectories of speed
v and current i, characteristic for the low speed servo application, is clearly
seen in both the measured and simulated results.

During the experiment, the tested LSRM was supplied by a controlled
voltage source inverter, while in the simulation its model was given by a static
element with the unity gain. All the nonlinear and dynamic properties of the
inverter, including properties of the pulse width modulation, were neglected.
The trajectories of the reference voltages uq and #u, recorded during the
experiment differ slightly from the calculated ones due to the simplified model
of the voltage source inverter. The difference between the recorded
and calculated trajectories of the reference voltage u, can be seen in Figure 7.
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The currents 7; and i, were close loop controlled, therefore the agreement
between their measured and calculated trajectories is very good.

5. Conclusion

The FE method based procedure for the calculation of current and position
dependent LSRM thrust and flux linkages is presented in the paper. The
two-axis dynamic LSRM model with lumped parameters is modified and
improved by incorporating the results of the FE calculations. The improved
LSRM model contains appropriately coupled models of the electric, magnetic
and mechanical subsystem. It is suitable for the control design, real time
applications, and low speed servo applications. The proposed model is
confirmed through the comparison of trajectories obtained by the experiment
and by the simulation in the case of kinematic control. The agreement of

presented results is very well achieved by combining the dynamic model with
results of the FE.
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Figure 7.

Trajectories of position x,
speed v, currents iy, 4,
and voltages w4, #, in the
case of kinematic control.
(a) Experiment; and

(b) simulation
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