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Simulation of a Three-Phase Transformer Using an
Improved Anisotropy Model
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Abstract—The nonlinear and anisotropic behavior of grain-ori-
ented ferromagnetic materials enters numerical field computations
via the reluctivity tensor. In this paper, an improved reluctivity
tensor model is discussed. It is pointed out in which way this model
is integrated in a Newton iterative solver. However, to retain the
attractive properties of the conjugate gradient algorithm, it is re-
quired to modify the definition of the Jacobian matrix. Several
simulations of a three-phase transformer are performed and com-
pared, in order to demonstrate the properties of the reluctivity
model and the proposed Newton solver.

Index Terms—Anisotropic media, magnetostatics, nonlinear
magnetics.

I. INTRODUCTION

NONLINEAR magnetostatic systems are described by

(1)

where is the vector potential [Vs/m], the applied current
density vector [A/m ] and the reluctivity tensor [Am/Vs]. This
tensor relates the flux density Vs/m to the field
strength [A/m], according to

(2)

The nonlinearity of the problem is due to the dependence of on
via . For two-dimensional problems, such as the simulation

of the field distribution in the laminations of the three-phase
transformer being considered here, (1) simplifies into

(3)

where and are the components of and that are per-
pendicular to the surface of the laminations and

(4)
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is a reordering of the reluctivity tensor

(5)

relating and in the global coordinate system . This
paper discusses techniques for solving (3), where the entries of

are determined from an improved anisotropy model.

II. RELUCTIVITY TENSOR PROPERTIES

It is assumed that the second-rank tensor is symmetric, i.e.,
, and positive definite. This implies that all magnetic

processes taking place at the microscopic level are thermody-
namically reversible [1]. As a consequence, magnetic hysteresis
effects are not treated in the analysis. The value of the tensor
entries depends on the coordinate system in which the magnetic
properties are considered. It is possible to determine a principal
coordinate system for which the off-diagonal tensor en-
tries are zero and the diagonal entries are positive [2]. Hence,
the reluctivity tensor contains only two independent entries.

For magnetically isotropic materials, and
. The axes and coincide with the material axes

for which is parallel to . Due to the Goss-texture of most
grain-oriented steels used in the laminated cores of large trans-
formers, and are generally in parallel to the rolling di-
rection (rd) and the transverse direction (td) of the steel sheet
[3]–[6]. Therefore, the entries of the reluctivity tensor, when
considered in the coordinate system , are denoted by
and (Fig. 1).

In order to evaluate in the global coordinate system ,
and are first determined. Next, the tensor transforma-

tion rule is used [1]

(6)

where

(7)

is the matrix of direction cosines and is the angle between the
axis and the axis (// rd). Below, the field-dependent behavior

of and is discussed.

III. RELUCTIVITY TENSOR MODEL

When a field is applied to a grain-oriented silicon steel
sheet, the ferromagnetic material is magnetized. The resulting
flux density is [7], [8]. The direction (relative to the rolling
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Fig. 1. Graphical interpretation of the relation between ~H and ~B, with
definition of their respective angles � and � relative to the principal coordinate
system fp; qg of the reluctivity tensor. The rolling and transverse direction
are parallel to the p and q axis, respectively. They are rotated over an angle 
relative to the global x and y axis.

Fig. 2. Reluctivity � in the rolling direction as a function of the direction �
and the magnitude j ~Hj of the applied field ~H , for silicon iron FeSi3% having
a Goss-texture.

direction) and magnitude of , both depend on the direc-
tion and the magnitude of and the magnetic history of
the material. Since hysteresis effects are not considered here,

is a nonlinear function of with the additional property
that . It follows that each pair
uniquely defines a value for and , both depending on

and . In [9] and [10], it is described in which way ex-
pressions can be obtained for and , by combining mag-
netization measurements with a physical anisotropy model for
Goss-textured silicon iron. The results are plotted in Figs. 2 and
3. It is remarked that this model only holds for field strengths at
which the coherent rotation process predominates, i.e., at field
strengths that saturate the ferromagnetic material.

The flux density can be obtained from a finite-element solu-
tion of (3), using . As a consequence, in order to
determine the reluctivity tensor from such a solution, one needs
a representation of and as a function of the direction
and magnitude of . By appropriately transforming Figs. 2
and 3, Figs. 4 and 5 are obtained. Obviously, a large part of the

region is not covered by this model, since the model
only holds in the saturation region. To overcome this problem,
a well-considered extrapolation is carried out. The goal of this
extrapolation is to dispose of a reluctivity tensor model which al-
lows to do numerical simulations. Alternatively, additional mea-

Fig. 3. Reluctivity � in the transverse direction as a function of the direction
� and the magnitude j ~Hj of the applied field ~H , for silicon iron FeSi3% having
a Goss-texture.

Fig. 4. Reluctivity � in the rolling direction as a function of the direction
� and the magnitude j ~Bj of the flux density, for silicon iron FeSi3% with a
Goss-texture.

Fig. 5. Reluctivity � in the transverse direction as a function of the direction
� and the magnitude j ~Bj of the flux density, for silicon iron FeSi3% with a
Goss-texture.

surements could be done for improving the quality of the final
model. The extrapolation is performed as follows.

• At high flux densities, it is suggested to extrapolate and
linearly. Theoretically, if is very large, this could

yield reluctivity values that exceed the reluctivity of air.
However, this situation is irrealistic in the final solution of
a nonlinear problem.
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Fig. 6. Modeled reluctivity � in the rolling direction as a function of the
direction � and the magnitude j ~Bj of the flux density, for silicon iron FeSi3%
with a Goss-texture.

Fig. 7. Modeled reluctivity � in the transverse direction as a function of the
direction � and the magnitude j ~Bj of the flux density, for silicon iron FeSi3%
with a Goss-texture.

• At low flux densities, it is remarked that the measured
magnetization curves in the rolling and transverse di-
rection appear in Figs. 4 and 5 at and ,
respectively, i.e., and . Their
behavior at low flux densities is known. Moreover,
measurements with rotational single sheet testers (RSST)
reveal that the -locus becomes more and more ellip-
tically shaped if the magnitude of a circular -locus
decreases. Such a behavior can be described with a tensor
whose components are independent of the angle of .
For these reasons, it is suggested to extrapolate
and proportionally to the known
and , in such a way that for smaller
than a predefined limit, and

.
The resulting reluctivity tensor model is plotted in Figs. 6 and 7.

IV. NONLINEAR SOLVING PROCESS

For solving (3) by the finite-element method, the domain of
the problem is divided into triangles. The discretized magnetic
vector potential writes

(8)

where is the number of nodes and the corresponding shape
functions. Here, linear shape functions are applied. Galerkin’s
method yields the following system of algebraic equations:

(9)

where is the residual vector, the stiffness matrix, vector
the vector potentials in the nodes of the mesh, and the vector
representing the applied current sources. If only one element is
considered, is a (3 3) matrix, whose entries are
given by

(10)

where is the area of the element, ,
[11]. The stiffness matrix of the complete problem

is obtained by assembling the entries of in , taking into
account possible boundary conditions [12]. It can be shown that
the obtained matrix is symmetric and positive-defi-
nite, provided and are positive [13]. Obviously, the latter
condition is always true. The nonlinearity of the problem is due
to the dependency of on via the reluctivity tensor. Equa-
tion (9) represents a system of nonlinear equations.

For practical problems, the numerical solution of (9) requires
an iterative approach. Starting from an initial guess, is
steadily updated until the norm of the residual is sufficiently
small. At each iteration, the system

(11)

must be solved, with the Jacobian of the residual (or its ap-
proximation) and a direction. In computational magnetics, it
is common to update with a line search procedure along that
direction [14], [15]. Alternatively, a trust region procedure can
be used, in which may be different from the exact solution of
(11) [16]. In this paper, they are both used as a tool. A thorough
discussion and comparison of these techniques is given in [17].

The convergence properties of line search and trust region
methods depends on the accuracy with which the Jacobian is
determined. Three cases can be distinguished.

• Linear convergence is obtained by setting . The
direction is the steepest descent direction.

• Superlinear convergence is obtained by setting to an
approximation of the Jacobian, yielding a quasi-Newton
method. From (9), it follows that is the most appro-
priate choice here, since no additional computations must
be performed for its evaluation. In that case, the method is
better known as Picard method or successive substitution
method.

• Quadratic convergence is obtained by setting ,
yielding the so-called Newton method.

When considering one single finite element, the entries of the
Jacobian are defined by

(12)

(13)
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Hence, the Jacobian equals the sum of the stiffness matrix
and a matrix that contains derivative information. Since the re-
luctivity tensor depends on two parameters, (or )
and , this additional matrix is the sum of two submatrices itself

(14)

with

(15)

(16)

and

(17)

(18)

(19)

(20)

As for , the partial derivatives in (18) and (20) depend on
(or ) and . For the particular case the material under consid-
eration is magnetically nonlinear and isotropic, the reluctivity
tensor may be replaced by a scalar and the elementary Jaco-
bian reduces to the well-known form [11]

(21)

The total Jacobian matrix is assembled in the same way as
the stiffness matrix, with a special treatment of the boundary
conditions [12]. At the end

(22)

is obtained.
From (17) to (20), one sees that , , and are sym-

metric matrices, whereas is not. As a consequence, only
is symmetric. Additionally, if and are pos-
itive, is positive-definite as well [13]. Unfortunately, these
partial derivatives might not be positive in the Rayleigh region
of the magnetization curves [7], [8].

These observations are important for choosing an appropriate
Krylov subspace method for solving (11). The conjugate gra-
dient (CG) method is the ultimate solver for symmetric posi-
tive-definite systems of equations [18]. It can be used to solve
the nonlinear problem by the Picard method. However, it is not
possible to retain its attractive properties if the Newton method
is desired, because is not symmetric and the contribution of

may yield an indefinite Jacobian . Therefore, it is suggested
to approximate as follows:

(23)

where is computed according to (15), but without allowing
negative values for and in (18). In this

Fig. 8. Outline of the three-phase transformer under consideration. The
grain orientation of the ferromagnetic laminations is vertical in the limbs and
horizontal in the yokes.

Fig. 9. Flux line distribution obtained when the phase of the currents in the
coils is�85 , 35 , and 155 , respectively. The flux density in the middle limb
is approximately 1.58 T.

way, the convergence of the nonlinear system is not quadratic
anymore, but it is expected to be better when compared to the
case in which is approximated by . This method is called
simplified Newton method in the text.

V. SIMULATION OF A THREE-PHASE TRANSFORMER

The proposed techniques are now tested for the simulation
of the no-load condition of a three-phase transformer plotted
in Fig. 8. Due to symmetry, the other half must not be consid-
ered in the simulation. The bottom line is modeled as a homo-
geneous Neumann boundary, the remaining air boundary as a
homogeneous Dirichlet boundary. The shape of the ferromag-
netic regions is indicated on the figure. Their grain orientation
is vertical in the limbs of the transformer and horizontal in the
yokes. A three-phase current is applied to the three copper coils
around each limb. Static solutions are computed for a series of
time instants over one period of the applied current, whose am-
plitude drives the material into saturation.

A. Field Distribution

In Fig. 9, the flux line distribution is plotted for the case of
phase of the currents in the coils is 85 , 35 , and 155 , re-
spectively. The flux density in the middle limb is approximately
1.58 T. Obviously, the bending of the field lines occurs particu-
larly near the joints. Moreover, due to the anisotropy, some flux
lines tend to fan out significantly from the middle limb, although
returning to the other yoke.

Fig. 10 shows some of the computed flux density loci in the
joint-region between the middle limb and the yoke of the trans-
former. Rotational magnetization is predominant close the joints
of the transformer, in contrast to the rest of the transformer
where alternating magnetization prevails. In [19] and [20], sim-
ilar -loci have been measured. Moreover, [19] cites that rota-
tional fluxes occurs in approximately 25% of the square around
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Fig. 10. Some flux density loci in the region close to the joint between the
middle limb and the yoke of the transformer.

Fig. 11. Detail of the flux density loci in point 1 of Fig. 10, obtained when
simulating with the isotropic model (left), the simplified anisotropic model
(middle) and the improved anisotropy model (right).

Fig. 12. Detail of the flux density loci in point 2 of Fig. 10, obtained when
simulating with the isotropic model (left), the simplified anisotropic model
(middle) and the improved anisotropy model (right).

the T-joint, where Fig. 10 reveals that it is approximately the
same here.

Figs. 11 and 12 zoom in on the -loci in points 1 and 2 of
Fig. 10, obtained when simulating with three different material
models:

• at the right, the improved anisotropy model presented in
this paper;

• in the middle, a simplified anisotropy model, obtained
from the previous one by only considering the components
of along the rolling or transverse direction

(24)

(25)

• at the left, an isotropic model, obtained from the previous
one by considering along the rolling direction

(26)

(27)

The sequence of dots on these loci represent the position of
at regular time intervals. It is concluded that the rotation of

Fig. 13. Convergence of the Picard trust region method (solid), the Picard line
search method with cubic line search (dashdotted) and the Picard line search
method with backtracking line search (dashed).

Fig. 14. Convergence of the Picard line search method (dotted) with the
simplified Newton method (dashed), at three different current levels in the
coils. The solid line indicates the deteriorating effect of allowing negative
partial derivatives in the simplified Newton method.

does not appear to be smooth: rather stays close to a cer-
tain direction for a while, although its magnitude may continu-
ously change, before it suddenly rotates toward a new direction.
Similar behavior is observed at other points close to the joints.
The isotropic material model generally yields higher magni-
tudes of in all directions, since the increased reluctivity in
the transverse direction is never considered. The shape of the

-locus obtained with both anisotropy models better resembles
each other. From the -locus in point 1, it follows that the sim-
plified anisotropy allows a larger average deviation of the flux
lines from the preferred rolling direction.

B. Convergence

Fig. 13 compares the convergence of the Picard line search
and trust region method. The convergence rate of the trust
region method (solid) is higher than the one with cubic line
search (dashdot) or even backtracking line search (dashed), in
which the relaxation factor is successively divided by two [17].
The significantly higher convergence rate of the trust region
approach in this example is a coincidence. However, the figure
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illustrates the improvement that can be obtained by using a
slightly more sophisticated line search algorithm.

In Fig. 14, the convergence of the Picard line search method
(dotted) is compared with the convergence of the simplified
Newton method (dashed), at three different current levels in the
coils. The inclusion of derivative information in the evaluation
of the (approximate) Jacobian, generally yields a significant im-
provement of the convergence rate, except when the flux density
level in the device is low. In that case, a major part of the fer-
romagnetic material is operated in the Rayleigh region, where
the derivative information is not retained. To show the deterio-
rating effect of these negative-valued partial derivatives on the
convergence, the simulation is repeated, using the exact in
(23) (solid line). In some simulations at these low flux density
levels, it was even impossible to solve the linear systems with
the CG-algorithm, since the positive-definite requirement was
violated.

VI. CONCLUSION

Grain-oriented ferromagnetic materials exhibit macroscopic
anisotropy. As long as hysteresis is not considered, this
anisotropy can be characterized by a symmetric and positive
definite reluctivity tensor. A model which allows to evaluate
the entries of this tensor, as a function of the magnitude and
direction of the flux density, is discussed. In order to benefit
from the convergence properties of the Newton solver, an
analytical expression for the Jacobian is derived. However, a
simplification is proposed to ensure the symmetric and positive
definite requirements. It is shown that this has a limited impact
on the solution process, since the convergence rate remains
much higher than for the Picard solver.
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