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Reducing the Computation Time of Nonlinear
Problems by an Adaptive Linear System Tolerance
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Abstract—Within the finite-element framework, nonlinear mag-
netic problems are often solved by an iterative line search strategy.
The efforts to achieve convergence concentrate on the selection of
an adequate relaxation factor. The line search is performed along
a direction obtained by solving a system of linear equations. How-
ever, it is not required to compute this intermediate solution with
a high accuracy, to ensure convergence. This paper shows how the
accuracy of the solver can be modified at each nonlinear iteration,
in order to reduce the overall computation time.

Index Terms—Nonlinear magnetics, optimization methods.

I. INTRODUCTION

NONLINEAR problems are common in computational
magnetics. When formulated in the finite-element frame-

work, they give rise to systems of nonlinear equations, of which
the solution is often obtained by an iterative procedure. Each
iteration essentially consists of two steps:

• the solution of a system of linear equations, in order to
determine a descent search direction;

• the line search procedure along that direction, in order to
maximize the overall performance.

For reducing the computation time, one usually considers the
second step [1]–[3]. However, methods that additionally con-
sider the first step for achieving that goal have already been de-
veloped as well. These so-called inexact Newton methods ex-
ploit the fact that it is not required to compute the line search
direction exactly for guaranteeing convergence [3]. This can be
done by steadily decreasing the relative linear system solver tol-
erance in a particular way. Doing so may have a considerable
impact on the overall computation time, especially if the initial
iterate is not close to the solution of the problem. This idea is
generally applicable to any type of nonlinear problem. Here, one
focuses on solving a typical nonlinear time-harmonic problem.
The problem is first solved by using the theoretical adaption
scheme for the relative linear system solver tolerance. By ad-
ditionally concentrating on the actual convergence rates, it is
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shown in this paper that an efficiency-based empirical approach
can even improve on this.

II. DEFINITIONS

The solution procedure contains two nested loops. At the
th nonlinear iteration of the outer loop, the system of linear

equations

(1)

must be solved, with the Jacobian of the nonlinear residual
(or its approximation) and the line search direction. This

system is solved by an inner loop. The initial guess for is
denoted by , the second index indicating the linear iteration
number. Subsequent iterates from the linear system solver are
indicated as . The vector

(2)

defines the linear residual at the th linear iteration of the th
nonlinear iteration. The linear system solver is terminated when

(3)

with the (relative) linear system solver tolerance. The se-
quence is known as the forcing sequence [3].

III. FIXED LINEAR SYSTEM SOLVER TOLERANCE

To illustrate the need of an adaptive linear system solver
tolerance, the simulation of the short-circuit operation of the
400-kW four-pole induction motor in Fig. 1 is simulated, using
a fixed value for . The stator and rotor are stacked with
a nonoriented ferromagnetic material, whose magnetization
curve is nonlinear. The relative permeability approximately
equals 1700 up to 500 A/m. At higher field strength, the mate-
rial saturates, e.g., T at A/m, causing
the time-harmonic problem to be nonlinear. The problem is
entirely solved by the Picard method, i.e., in (1) is approx-
imated by , with the (field dependent) stiffness
matrix and the eddy-current matrix [4]. Alternatively, the
Newton–Raphson method could be applied as well [5]. A cubic
line search procedure determines the relaxation parameter [3].
The associated complex symmetric system of equations is iter-
atively solved using the ILU-preconditioned COCG-algorithm
[6]. For the analysis, the mathematical software library PETSc
(Portable Extensible Toolkit for Scientific Computing) has
been used [7].
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Fig. 1. Magnetic flux lines in a 400-kW induction motor under short-circuit
operation.

Fig. 2. Total computation time as a function of the relative tolerance � of the
linear system solver, at two different saturation levels.

Increasing causes a deviation of the computed direction
from the exact line search direction. In fact, the higher is, the
smaller the number of linear iterations is, the closer is to its
initial guess . Often, is taken, i.e., the steepest
descent direction, since this direction is available without
any additional computational efforts. In other algorithms, the
steepest descent direction is obtained after one linear iteration.
Hence, the higher is, the more the convergence rate reduces
toward linear convergence. On the other hand, as long as the
deviation between the computed and the exact line search
direction remains small, the convergence rate is hardly affected.

Fig. 2 shows the overall computation time as a function of a
fixed , at two different current levels. The lower curve corre-
sponds to the case with the smallest current and never requires
relaxation, whereas the simulations for the upper curve require
significant relaxation, due to local saturation effects. Irrespec-
tive of the observed oscillations, it is obvious that an optimal
tolerance seems to exist. Moreover, it has a rather high value
( 0.3). Since the optimal value of a fixed is not known in
advance, it is suggested to adjust at each nonlinear iteration
in such a way that better performance may be expected.

IV. ADAPTIVE LINEAR SYSTEM SOLVER TOLERANCE

A. Practical Analysis

In order to elaborate an efficient update algorithm for , two
simulations at the largest current level in Fig. 2 are studied in
detail: one with , the other with . For both,

Fig. 3. The norm of the linear residual while iterating with a fixed linear
system solver relative tolerance of 0.01 (top) and 0.5 (bottom).

the norm of the linear residual is plotted in Fig. 3 as a function
of the iteration number.

• The circles indicate the norm of the linear residual at the
beginning of a linear system solve, i.e., . Since

is taken as initial solution for the linear system, it follows
that . Hence, these circles represent the
norm of the nonlinear residual as well and their sequence
indicates the convergence of the nonlinear algorithm.

• The plus-signs indicate the norm of the linear residual at
the end of a linear system solve, i.e., , with the
number of linear iterations required to decrease the linear
residual by a factor .

• Between and , the line search algorithm is performed
and the Jacobian is updated.

The upper part of this figure, obtained for , illustrates
that the effort for computing the descent direction is high when
compared to the decrease it yields for the nonlinear residual.
This defines a first type of efficiency, characterized by the ratio

(4)

The nominator is a measure for the obtained reduction of the
nonlinear residual norm. The denominator is a measure for the
computational cost for obtaining that reduction. Obviously,
is low here. The lower part of the figure, obtained with ,
yields a much higher value of this ratio. Since the latter con-
verges faster, it is concluded to increase if is too low. On
the other hand, if is too high, the linear system solver is ter-
minated at a moment that the nonlinear residual could be further
decreased. Therefore, high values of suggest a reduction of

.
Next to these observations, the lower part of Fig. 3 shows

that many short iterations are performed at the beginning. This
increases the ratio of the time for building the system of linear
equations to the time for solving it. The ratio

(5)

with the time instant at which the th linear iteration of
the th nonlinear iteration begins, characterizes this second type
of efficiency. It is one reason for the increased computation time
at high values of in Fig. 2, besides the fact that increasing
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gradually transforms the Picard method into a steepest descent
method. As a consequence, it is recommended to decrease if

is too low.
In the frame of this work, many experiments have been per-

formed in order to estimate how could be adjusted. The fol-
lowing algorithm is suggested here.

• Neither small nor high values of are desired. Let
be the optimal value of this parameter.

• If , the weight

(6)

is a number between 0 and 1. The higher is, the more
should be decreased. From Fig. 2, it is decided to restrict
this decrease to a factor 2. Therefore

(7)

is proposed here.
• If , the weight

(8)

is a number between 0 and 1. The higher is, the more
should be increased. When is very small, Fig. 2 reveals
that the system tolerance may be significantly increased,
up to several orders of magnitude. However, to avoid a too
low value of , it is suggested to limit to 0.9 by
applying

(9)

here.
• If is low, it is desired to increase the linear system

solving time significantly, requiring a relatively large re-
duction of the system tolerance. To avoid that is too
low, the reduction is restricted to a factor of 20, by setting

(10)

When resimulating the short-circuit operation of the induc-
tion machine using this algorithm, with initiated with the
same relative tolerances as in Fig. 2, the averages of the com-
putation time become 17.0 and 32.4 s, with a standard deviation
of 0.8 and 3.0 s, respectively. Compared to these, the minimal
computation times in Fig. 2 are 14.1 and 25.2 s, but their av-
erage value and standard deviation is much higher. This shows
that the overall computation time appears to be almost indepen-
dent of the initial value of the linear system tolerance.

B. Theoretical Analysis

It is possible to analyze the problem of adjusting in a math-
ematical way. The details of this analysis are given in [3]. At this
place, only the results are mentioned.

• Under the usual conditions, that the residual is continu-
ously differentiable in a neighborhood of the solution, that

Fig. 4. Norm of the residual as a function of time, when the current level in
the coils is low, for the method with fixed � (dotted), adaptive � (solid), and
� = min(0:5; kr k) (dashed).

the Jacobian1 is positive definite at the solution and that no
relaxation is required from a certain iteration on, one can
show that the subsequent iterates at least converge linearly
to the exact solution, provided .

• If in addition the forcing sequence approaches 0 for in-
creasing values of , the asymptotic convergence is at
least superlinear. The latter can be obtained for example
by setting

(11)

• If , the asymptotic convergence rate is
quadratic, provided is the exact Jacobian. This can be
achieved, for example, by setting

(12)

These theorems suppose that no relaxation is required. However,
the convergence rate seems to be reasonable as well in practical
line search algorithms with relaxation [3], [8].

C. Results

The convergence of three methods is compared:

• the first method uses a fixed value for ;
• the second method adjusts according to the proposed

algorithm;
• the third method imposes , for

achieving superlinear convergence of the Picard method.
They are compared for two different coil currents of the in-
duction machine. The resulting convergence characteristics are
plotted in Figs. 4 and 5. The values of the linear system toler-
ance are plotted in Figs. 6 and 7.

Fig. 4, obtained for the smallest current in the coils, obvi-
ously reveals the increased asymptotic convergence rate of the
third method, compared to the others. Unfortunately, this ef-
fect only occurs when the residual norm already decreased by
a factor 10 . Moreover, the higher the current level, the less
this beneficial property is observed, as illustrated by Fig. 5. It
is therefore concluded that in practical terms, (11) or (12) does

1In the time-harmonic case, the Jacobian is only defined if the residual is
split up in its real and imaginary part [5]. However, this splitting must not be
performed for computing the line search direction in the Picard approach.
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Fig. 5. Norm of the residual as a function of time, when the current level in
the coils is high, for the method with fixed � (dotted), adaptive � (solid), and
� = min(0:5; kr k) (dashed).

Fig. 6. Linear system solver tolerance as a function of time, when the current
level in the coils is low, for the method with fixed � (dotted), adaptive � (solid),
and � = min(0:5; kr k) (dashed).

not play a significant role in decreasing the overall computation
time. From Figs. 6 and 7, it follows that the proposed update
algorithm for automatically evolves toward a relatively high
value, where it slightly oscillates from one iteration to the other.

V. CONCLUSION

Numerically solving nonlinear problems involves two nested
iterative loops. At each iteration, a linear system of equations is
iteratively solved. Theoretically, the highest convergence rate is
achieved when the forcing sequence steadily decreases toward

Fig. 7. Linear system solver tolerance as a function of time, when the current
level in the coils is high, for the method with fixed � (dotted), adaptive �

(solid), and � = min(0:5; kr k) (dashed).

zero. In practice, the convergence rate approaches its asymp-
totic value only when the residual norm already significantly de-
creased. Therefore, it is suggested to solve nonlinear problems
with a relatively high value of the linear system solver tolerance.
A novel algorithm which updates at each iteration, based on
two efficiency indicators, is proposed. The overall computation
times appears to be almost independent of the initial value of
the linear system tolerance.

REFERENCES

[1] K. Fujiwara, T. Nakata, and N. Okamoto, “Method for determining re-
laxation factor for modified Newton-Raphson method,” IEEE Trans.
Magn., vol. 29, pp. 1962–1965, Mar. 1993.

[2] J. O’Dwyer and T. O’Donnell, “Choosing the relaxation param-
eter for the solution of nonlinear magnetic field problems by
the Newton-Raphson method,” IEEE Trans. Magn., vol. 31, pp.
1484–1487, May 1995.

[3] J. Nocedal and S. J. Wright, Numerical Optimization, 1st ed, ser.
Springer Series in Operations Research. New York: Springer, 1999.

[4] K. J. Binns, P. J. Lawrenson, and C. W. Trowbridge, The Analytical and
Numerical Solution of Electric and Magnetic Fields. Chichester, U.K.:
Wiley, 1992.

[5] D. Lederer, H. Igarashi, and A. Kost, “The Newton-Raphson method
for complex equation systems,” in Proc. 7th Int. IGTE Symp. Numerical
Field Calculation in Electrical Engineering (IGTE’96), Graz, Austria,
Sept. 1996, pp. 391–394.

[6] H. A. Van der Vorst and J. B. M. Melissen, “A Petrov-Galerkin type
method for solving Ax = b, where A is symmetric complex,” IEEE
Trans. Magn., vol. 26, pp. 706–708, Mar. 1990.

[7] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. C.L. Curfmann
McInnes, and B. F. Smith. (2001) PETSc Home Page. [Online]. Avail-
able: http://www.mcs.anl.gov/petsc

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton
methods,” SIAM J. Numer. Anal., vol. 19, pp. 400–408, 1982.


