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Abstract For anisotropic materials, the magnetic field vector H and the Sflux density vector B are
parallel with each other only along a few distinct directions. When performing unidirectional
measurements, only the component of B along the direction under consideration is measured.
It is not possible to deduce the angle between B and H from unidivectional measureinents alone.
For ferromagnetic materials having a Goss-texture, as most transformer steels have, this paper
demonstrates a way to compute this angle a posteriori, by the combination of measurements with a
physical anisotropy model.

1. Introduction

It is customary in computational electromagnetics to directly implement
material characteristics in the form given by the steel manufacturers. As
the measurements of such characteristics involve generally only scalar
quantities, their implementation as such in a magnetic field finite element
program constitutes a de facto generalisation, which is not supported by
any arguments and never mentioned. Measurements give only a partial
view on the complicated behaviour of matter (and in particular that of iron

This is a revised and enhanced version of a paper which was originally presented as a conference
contribution at the XII Symposium on Electromagnetic Phenomena in Nonlinear Circuits (EPNGC),
held in Leuven, Belgium, on 1-3 July 2002. This is one of a small selection of papers from the
Symposium to appear in the current and future issues of COMPEL.
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Figure 1.

The reluctivity curves
for CGO steel (FeSi

3 per cent), under various
angles with respect to
the RD

and steel). They therefore need to be interpreted in the context of the
mechanisms in play at the microscopic level. The purpose of this paper is
to propose such an interpretation in the case of the analysis of the
anisotropy of laminated steels.

Unidirectional magnetic measurement setups measure the components of
both, the magnetic flux density B (T) and the magnetic field strength H (A/m)
along a fixed direction. They can be used to assess the anisotropy of a
ferromagnetic material, by measuring the magnetisation curves Beas(Hmeas, @)
of a series of small strips, cut out of a metal sheet under various angles.
The reluctivity ¥meas (A m/V s), defined by

H
Vmeas = E‘% ’ (1)

meas

depends non-linearly on Bye,s and a. Figure 1 shows the measured reluctivity
curves for a conventional grain-oriented (CGO) steel Fe-Si 3 per cent, along a
number of directions with respect to the rolling direction (RD) (Shirkoohi and
Arikat, 1994; Shirkoohi and Liu, 1994).

2. Goss-texture

From Figure 1, it follows that the material is the easiest to magnetise along the
rolling direction, while it is the hardest to magnetise at an angle of
approximately 55° with respect to the rolling direction. These characteristics
reveal the Goss-texture of the steel sheet. Silicon steel, mainly composed of
cubic iron crystals, can be given a Goss-texture by an appropriate
manufacturing process requiring several rolling stages and annealing phases
in the presence of inhibitors (Lee and Jeong, 1998 Takahashi et al., 1996).
A silicon steel sheet features a Goss-texture when for all crystals the (001) axis
coincides with the rolling direction and the {110} plane is parallel to the surface
of the sheet (Figure 2). The behaviour observed in Figure 1 can be explained by
thoroughly considering the magnetisation process.
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3. Magnetisation process

All ferromagnetic materials are characterised by the presence of magnetic
domains, in which the material is magnetised up to the saturation
magnetisation M. For a pure iron single crystal, M;=1.71x10°A/m
(Jiles, 1991). For electrical steel, its value slightly depends on the silicon content
(Littmann, 1971). If no external field is applied, the magnetic domains are
randomly distributed with their magnetisation vector along one of the
preferred easy axes (100), (010) or (001). When the external field is increased
slightly, the domains that are aligned in a direction close to that of the applied
field start growing. At moderate fields, the domains suddenly and irreversibly
rotate towards the easy axis closest to the applied field. Once they are all
parallel, i.e. above the knee of the magnetisation curve, they rotate reversibly
towards the applied field (Bozorth, 1951; Jiles, 1991; Robert, 1987).

This paper focuses on the latter process, often called coherent rotation.
At those high field strengths, the domain wall motion is less important when
compared to the domain rotation. It is therefore assumed that the domain walls
do not move, regardless of the applied field. In this case, the magnetisation
process is described in terms of anisotropy and field energies.

4. Anisotropy and field energy .

Within a single domain, the magnetisation vector is denoted by My (A/m). Its
magnitude is constant and equals M. Its direction depends on the direction and
the magnitude of the externally applied field H.

My naturally tends to align with one of the easy axes of the crystal.
Deviation from this equilibrium state corresponds to an energy increase, which
is due to the intrinsic anisotropy of the crystal. For cubic crystal systems, the
anisotropy energy E, (J/m®) is given by
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Figure 2.

Definition of a
Goss-texture, with the
RD and the transverse
direction (TD)




COMPEL Eo =Ko+ K1 (v22 + vEvE + virl) + K2 (¥ %), 2) * For}

232 with 1,72 and s, the direction cosines of My in the crystallographic coordinate gggcl]
system (Rollett et al., 2001). K, is an arbitrary constant. K; and K, are the

anisotropy constants. In the case of a pure cubic iron single crystal, these are * The

582 Ky = 048 % 10°]/m3 and K = 0.05 x 10°]/m® (Jiles, 1991). For steels, their alon,

values depend on the silicon content (Littmann, 1971). R 5. Hybri

On the other hand, when an external field H is applied, My tends to align The hybr;

with it as well. The corresponding energy Ey, (J/m®) is the so-called field energy plane is «

En = —poMa-H. 3)
The process of coherent rotation of the domains can be considered as_a
competition between the anisotropy energy (2) and the field energy (3): My
stabilises in a direction for which the total energy Ei = E, + Ep attains a
minimum. In order to compute this minimum, the Newton-Raphson method can
be applied (Rollett et al, 2001).

In practice, the (001) direction and the RD can differ slightly (Nakano et al,
1999). In the model presented here, it is assumed that they are in parallel. The
measurement setup generates a field in the {110} plane. If the angle a between /1
and the (001) direction is smaller than 54.7°, the local magnetisation vector My
lies in the {110} plane as well. In that case, equations (2) and (3) simplify into

E, = %lsinZ 04— 3sin® 0) + %COSZ gsin® 0 4)
and
Ey = —uoM|H| - cos(o — 6), 6)

where 6 is the angle between My and the (001) (/RD) direction. On the other
hand, if a > 54.7°, M tries to align with one of the easy axes that are not in the
{110} plane. Since attraction to the (100) axis and the (010) axis is of the same
probability, itis obvious that all individual vectors My, when superposed, yielda
global magnetisation vector M that lies in the {110} plane.

For the analysis of CGO steel with 3 per cent Si, Ms = 1.61 X 106 A/m and
K = 0.375 x 10° ] /m3 (Littmann, 1971). The influence of K, on E, is neglected.
The anisotropy energy, computed in the stable positions of My, is plotted in
Figure 3 as a function of the applied field |H] and its direction a. For the same
data, Figure 4 shows the angle 6 between the global magnetisation vector M
and the (001) axis. Several conclusions can be drawn from these figures:

« If o is small, Mand Md take up a position in the {110} plane close to the
(001) axis.

. If ais close to 90°, @ is close to 90° as well. M lies in the {110} plane.
However, Figure 3 reveals that My is not in the {110} plane if |H] <
35kA /m, because E, varies there.
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+ For higher magnitudes, Mand Md are approximately parallel to H. They
both lie in the {110} plane and the anisotropy energy is approximately
described by equation (4), with 6 replaced by a.

+ The direction of M and Md changes continuously if Iﬁ] varies in time
along a fixed direction.

5. Hybrid model .
The hybrid method works in two steps. First, the direction of M in the {110}
plane is determined corresponding to a field H with a fixed direction as
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Figure 3.

The anisotropy energy
computed in the stable
positions of the local
magnetisation vector, as
a function of the
magnitude and the
direction of the applied
field

Figure 4.

The angle between the
global magnetisation
vector in the {110} plane
and the (001) axis as a
function of the
magnitude and the
direction of the applied
field
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Figure 5.

The definition of the
applied field, the global
magnetisation vector, the
flux density and their
directions in relation to
the measurement setup

discussed earlier. To accelerate the procedure, the minimum of E is determined
by equations (4) and (5) if o < 54.7°. Else, it is determined by equations (2) and
(3) Rollett et al., 2001). .

The second step is the extraction of the magnitude of M in a known
direction, using the measurement data. The flux density B is related to
the applied field A and the magnetisation M by:

B= ,LLO(ET-}— ]\2) (6)

Figure 5 indicates how equation (6) is related to the measurement setup. It
follows that the components of B, H and M along the H axis satisfy

B -
N meas .. !H’
— M
M = cos(a—6) @

Only M is unknown in this equation. Subsequently, the components of B are
obtained by considering equation (6) in a reference frame attached to the (001)
direction:

%COS,B = |Hicos a + [M]cos 6

N . - , )
%sinﬁ = |Hlsin @ + |M]sin 6

with B the angle between B and the (001) axis.

6. Reluctivity tensor
Using the previously presented hybrid approach, it is possible to compute the

two components of B and hence the reluctivity tensor. If this symmetrical
second-order tensor is considered in its principal coordinate system, it has zero
off-diagonal entries (Nye, 1985). For this application, the (001) ( //RD) and the
(—110) (//TD) axis are the principal axes of the tensor, as B and H are
parallel in these directions. As a consequence,
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7. Data set

Now, the analysis is applied to an empirical data set, which matches the
observed anisotropic behaviour in Figure 1. For that, it is supposed that the
Frohlich-Kennely relation gives the shape of all magnetisation curves at field
strengths higher than 300 A/m (Bozorth, 1951; Jiles, 1991):

(H

M= M1+§H

1D

Depending on the magnetisation angle, the flux density is multiplied by a
factor, which expresses the fact that the magnetisation is the easiest in the RD,
harder in the TD and the hardest for o = 54.7°. Moreover, the analysis has
been carried out at field strengths higher than those used while measuring the
data depicted in Figure 1, in order to demonstrate the high field characteristics.
The explanatory graph BmaS (Hpeas, @) applied for the analysis is plotted in
Figure 6 ({= 8 x 10™%).

8. Analysis

The direction B and the resulting flux density IBI computed from the empirical
data set of Figure 6, are shown in Figures 7 and 8, respectively. Obviously,
Figure 7 shows that for small |H], B stays close to the (001) (// RD) or the
( — 110} (// TD) axis, irrespective of its direction a. For higher fields, B and H
tend to align. This is in correspondence with the theory of magnetisation
(Bozorth, 1951; Jiles, 1991; Robert, 1987). _

Figure 8 reveals that, for constant IHI the actual magnitude of B does
not behave like its measured component. The discontinuity which occurs for
a = 54.7° indicates that the total energy function has local minima at lower
field strengths. This reveals an interesting feature, since B may point in two
different directions for that angle. Hence, B must behave differently for
right-turning and left-turning fields, once a passes 54.7°. Unidirectional
measurements do not allow the analysis of that kind of behaviour.

When the data shown in Figures 7 and 8 are combined, with |H| and e as a
parameter, it can be observed that there is a large empty region in the
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Figure 6.

The empirical data set
applied to explain the
hybrid anisotropy model

Figure 7.

The angle between the
flux density vector in the
{110} plane and the
{001) axis as a function
of the magnitude and the
direction of the applied
field

|B|-B-plane (Figure 9). In order to flip over the 54.7°-direction, B must follow a
contour in the empty region in a particular way. Obviously, this region is
empty due to the fact that only the coherent rotation is considered. To avoid
this, the model must be extended in such a way that it considers the low field
behaviour and the statistical distribution of the cubic crystal orientations in the
sheet as well (Fulmek and Hauser, 1996; Rollett et al, 2001; Salz and Hempel,
1992). Figure 9 can be used to reveal how H behaves when B rotates in space
with a constant magnitude. The result, for |B| = 1.55T, is plotted in Figure 10,
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ns in the In order to assess the magnetic anisotropy of a material with a unidirectional

Hempel, measurement _setup, the magnetisation curves must be measured in various 587
n space directions of H. However, this does not yield any information about the angle

igure 10, between B and H. For Goss-textured ferromagnetic materials, a hybrid method

is described that allows computing this angle at field levels for which the
material saturates. The direction of M is determined by minimising the sum of
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The magnitude of the
flux density vector in the
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of the magnitude and the
direction of the applied
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Figure 10.

The resulting H-locus,
when B rotates with a
constant magnitude of
155T
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& max’ X roex

anisotropy and field energy. Its magnitude is subsequently obtained from the
measurements. The computation of the reluctivity tensor then becomes
straightforward. The method is applied to an empirical data set. It is
demonstrated that anisotropy may lead to a different behaviour against field
with a small magnitude rotating in opposite directions. The method permits to
determine the B-locus in space, given a H-locus and vice versa.
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