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Abstract: Different formulations for the problem of a cloud of ions convected by electrostatic
forces are presented. Their influence on the ionic charge conservation is discussed. It is shown that a
mixed electrostatic formulation is the most accurate for the studied example.

1 Introduction

The numerical analysis of an electrostatic painting process
[1] requires the solution of the classic electrostatic equations
coupled with a charge conservation equation:

@tri þr � j ¼ 0 ð1Þ
where ri is the ion charge density. The purpose of this work
is to determine whether the current density is preferably
expressed as j¼ me�1dri or j¼ meri. At the discrete level, the
first expression ensures continuity of the normal component
of j, across material discontinuities and inter-element
boundaries, which is the natural continuity for a flux
density (here a flux of ionic charge, [j]¼ in units of
coulombs per square metre per second). On the other
hand the second expression, which is more customary,
ensures the continuity of the tangential component of j. In
particular, the influence on the conservation of the total
charge in the system during the transient process is
analysed.

2 Equations

The device consists of a set of thin wires parallel to a
grounded iron plate. The wires are brought to a negative
potential of high amplitude. The resulting electric field is
particularly strong around the wires and causes the
acceleration of free electrons which move away from the
cathode and combine with atoms. The negative ions drift
toward the anode, i.e. the grounded plate, because of
Coulomb forces. The model is limited to a box extending
from the middle of a wire to half the distance between two
consecutive wires (Fig. 1). In the absence of coating
particles, the ion drift is described by the equations:

r � d ¼ ri ð2Þ
r� e ¼ 0 ð3Þ

d ¼ e0e ð4Þ
@tri þr � ðmieriÞ ¼ 0 ð5Þ

where mi is the ion mobility in units of volts per second [2].

Equations (2)–(5) define an electrostatic problem
coupled with a transient convection problem. They are
solved separately: the transient equation is numerically
integrated in time and the static problem is solved at each
time step. Nonlinear iterations can be avoided if the time
step is small enough to ensure a slow evolution of the
solution.

3 Electrostatic formulations

3.1 Electric scalar potential V
The classic scalar potential formulation reads as:

find VAHV(O) such that:Z
O
rV 0 � rVdO�

Z
O

V 0e�10 ridO ¼ 0 ð6Þ

8V 0 2 HV0
ðOÞ

with the function spaces

HV ¼ V 2 Hðgrad;OÞ : V jGin¼ V0; V jGout¼ V1

� �
ð7Þ

HV0
¼ V 2 Hðgrad;OÞ : V jGin¼ V jGout¼ 0
� �

ð8Þ

3.2 Electric vector potential w
The electric flux density is defined as:

d ¼ ds þr� w ð9Þ
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Fig. 1 Boundary conditions for the finite element model of the
electrostatic painting device
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where ds is a source field such that r� ds¼ ri so that (2) is
satisfied exactly. The weak formulation reads as:

find ds 2 Hds (O) and wAHw(O) such that:Z
O
e�10 r� w0 � ðds þr� wÞ dO ¼ 0 ð10Þ

8w0 2 Hw0
ðOÞ

with the function spaces

Hds ¼ ds 2 Hðdiv;OÞ : dsjGin[Gext¼ 0;
�

r � ds ¼ ri inOg
ð11Þ

Hw ¼
�

w 2 Hðcurl;OÞ : r� wjGext¼ 0;

Z
@Gin

w ¼ jd

� ð12Þ

Hw0
¼ w 2 Hðcurl;OÞ : wjGext[@Gin¼ 0
� �

ð13Þ
The source field is built prior to the assembly on the basis of
the current value of the ion charge density. It is discretised
with face elements [3], which in 2D are associated with the
edges of the mesh. The vector potential only has a non-zero
component in the Z-direction and is therefore discretised
with nodal elements, as is the magnetic vector potential a.

Since the potential V cannot be fixed in this formulation,
a constraint is set on the total flux of d through the
boundary of the wire Gin. This amounts to fix the circulation
of w on the contour of Gin because ds is zero on this
boundary.

3.3 Mixed d-V formulation
The unknown fields are the scalar potential V and the
electric flux density d. A weak formulation of (2) and (4) is
solved:

find dAHd (O) and VAHV (O) such that:Z
O
rV 0 � d dOþ

Z
O

V 0 ri dO

�
Z
Gin[Gout

V 0d � n dG ¼ 0

ð14Þ

8V 0 2 HV0
ðOÞ; andZ

O
e�10 d 0 � d dOþ

Z
O

d 0 � rV dO ¼ 0 ð15Þ

8w0 2 Hw0
ðOÞ

with the function space

Hd ¼ d 2 Hðdiv;OÞ : djGext¼ 0
� �

ð16Þ
in addition to (7) and (8). Fields V and d are discretised with
nodal and face elements, respectively. The resulting
algebraic system takes the form of:

A B
BT 0

� �
xd

xV

� �
¼ 0

b

� �
ð17Þ

where xd and xV are the unknown degrees of freedom of the
fields d and V. The empty block on the diagonal of the
system (17) is characteristic of mixed formulations.

Babu$ska and Brezzi have proved that the discrete
function spaces for the unknown fields of a mixed problem
solved with finite elements must satisfy the so-called
Babu$ska-Brezzi (BB) condition [4]. In fluid mechanics, this
condition prevents some combinations of shape functions
from being used for the velocity and pressure in
incompressible Navier-Stokes equations: equal order ele-
ments, for example, lead to spurious pressure oscillations.

One possibility is to discretise the pressure and the velocity
with first-order and second-order elements, respectively. In
order to apply this result to our electrostatic formulation,
we should discretise d with second-order face elements and
V with first order nodal elements.

An alternative has been proposed in [5] and [6] where use
is made of modified weighting functions in order to
circumvent the BB condition. The pressure-stabilised
Petrov-Galerkin (PSPG) method allows the velocity and
pressure to be discretised with equal order elements. In fluid
mechanics, the weighting functions for the momentum
equations become:

v0 ! v0 þ terp0 ð18Þ
where v is the velocity, p is the pressure and te is an element-
dependent constant free parameter, comparable with the free
parameter of the streamline upwind Petrov-Galerkin (SUPG)
formulation, which is empirically determined. By analogy,
the PSPG method can be applied to the mixed electrostatic
formulation by modifying the weighting functions of (15):

d 0 ! d 0 þ terV 0 ð19Þ
which amounts to adding the following terms to the left-hand
side:

te

Z
O
e�10 rV 0 � d dO

þ te

Z
O
rV 0 � rV dO

ð20Þ

The second advantage of the method is that the structure of
the system (17) becomes:

A B
ð1þ teÞBT C

� �
xd

xV

� �
¼ 0

b

� �
ð21Þ

which is no longer indefinite. The choice of an appropriate
value of te is discussed in Section 5.

4 Time integration schemes

A time integration scheme suitable for convection equations
must be chosen for (5). Two schemes based on Pad!e approxi-
mants are used, an explicit (R0,3) and an implicit one (R2,1).

4.1 Explicit R0,3
The Taylor-Galerkin scheme derives from the approximant
R0,3. It is a third-order function that is accurate and requires
a less severe condition on the time step than the Lax-
Wendroff scheme [7]. In the multi-step version of the
scheme, only first-order derivatives are needed:

rnþ1=3 ¼ rn þ 1

3
Dt@trn ð22Þ

rnþ1=2 ¼ rn þ 1

2
Dt@trnþ1=3 ð23Þ

rnþ1 ¼ rn þ Dt@trnþ1=2 ð24Þ

4.2 Implicit R2,1
This scheme is unconditionally stable for convection
equations [8]. The two-step expression avoids second-order
derivatives at the cost of an additional intermediate
unknown, rn+1/2:

rnþ1=2 þ 2

3
rnþ1 � 1

6
Dt@trnþ1 ¼ 0 ð25Þ

rnþ1 þ Dt@trnþ1=2 ¼ rn þ 1

3
Dt@trn ð26Þ
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5 Results

The different formulations are first studied on a simple test
case where the time step and the element size can be easily
varied. The purpose is to both determine an optimal value
for the free parameter in the stabilised mixed formulation
and also to study the convergence of the charge conserva-
tion error for the electrostatic formulations. The error is
defined as the residual of (5):

Rn
r ¼

Z
O
rnþ1

i � rn
i dOþ Dt

Z
@O

j � n d@O ð27Þ

which quantifies the difference between the charge which
has been gained or lost by the system through its boundaries
during the time interval Dt, and the effective variation of the
total charge. The relative error rn

r is the residual Rn
r divided

by the total charge at steady-state conditions. It can be
integrated in time to characterise the global error for the
whole integration process:

rQ ¼
Xnmax

n¼1
rn
r

��� ��� ð28Þ

The real model is then solved to confirm the results
obtained with the simple configuration.

5.1 Test model
The test model consists of a rectangular domain. The
electric potential is fixed to zero and Vmax on the left
boundary (Gout) and the right boundary (Gin) respectively.
The initial distribution of ri is exponential in order to
induce an intense electric field near the right boundary, as
actually occurs around the wire in the real problem. In
order to determine an optimal expression of te for the
stabilised d�V formulation, the electrostatic equation is
solved for several meshes with a decreasing element size he.
The number of bi-conjugate gradient (BiCG) steps as a
function of te is plotted in Fig. 2 for different values of he.
The optimal value of te lies for each mesh between zero
and �1 and does not vary strongly with he. Therefore,
a constant value te¼�0.8 has been chosen for all
computations.

The problem is solved with both explicit and implicit
schemes for Dt¼ 5� 10�6 s, and with the implicit scheme
for Dt¼ 20� 10�6 s. The error rQ is plotted in Fig. 3. The
implicit and explicit time schemes give similar results and

the corresponding curves are identical. It appears that the
error is higher when j is expressed as j¼ meri (scalar
potential formulation) than when expressed as j¼ me�1dri

(vector potential and mixed formulations). The lowest error
is obtained with the vector potential formulation with
source field.

5.2 Real model
A uniform charge density ri¼�10�9C/m3 is assumed at
t¼ 0. First, ions are created around the wire and start
moving away from it in all directions. At some distance
from the wire, the charges are attracted by the plate where
they are neutralised. The ionisation phenomenon reaches a
steady-state condition after 1 ms (Fig. 4) and after 1.5 ms,
the flux of ions reaching the plate compensates the flux of
ions leaving the wire to within 1%. From that moment on,
the total charge of the system must be constant. The charge
density at steady-state and the corresponding source field
are represented in Figs. 5 and 6, respectively.

The implicit time integration scheme is used with
Dt¼ 10�5 s. The explicit scheme is not used because its

stability condition C2o1, where C is the Courant Friedrichs
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Fig. 2 Test model: number of iterations of the BiCG solver for the
stabilised mixed d�V formulation as a function of the parameter te,
for different values of the element size he
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Fig. 3 Test model: relative error rQ as a function of the number of
nodes for the test-case solved with the different electrostatic
formulations, with Dt¼ 5� 10�6 s (continuous lines) and Dt¼
20� 10�6 s (dotted lines)
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Fig. 4 Real model: ion current flowing through the wire (‘in’) and
the plate (‘out’); the ‘o’ marks the point where the current has
reached 99 % of i steady-state value
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Levy condition (CFL) number [8], imposes such a
restriction on the time step that tens of thousands of
iterations would be necessary to reach the steady-state
condition.

The relative error rn
r is plotted in Fig. 7 as a function

of time for the different formulations. It is a maximum
at the beginning of the computation, when the input
current is a maximum, and converges towards a
constant. The largest error occurs for the scalar potential
formulation with first-order elements. It decreases when
second-order elements are used but remains significantly

higher than the error obtained with the d�V and ds�w
formulations.

The total error rQ is given in Table 1 with the number of
degrees of freedom of each formulation. The formulation
with source field (ds�w) is apparently the most interesting,
since it is the most accurate and requires only nnode
unknowns. However, the flux of d that is fixed by the
boundary conditions is for this problem an unknown
quantity which has to be determined in some way. In this
case, the problem is first solved with a scalar potential
formulation and jd is calculated as the integral of �e0rV
on the boundary. On the other hand, the mixed formulation
requires more unknowns but the boundary conditions on
the potential are easily taken into account, and it is more
accurate than the scalar potential formulation with second-
order elements.

6 Conclusions

The equations describing the drift of ions in an electrostatic
painting device have been presented. Two unusual electro-
static formulations have been proposed in addition to the
classic scalar potential formulation: the vector potential
formulation with source field (ds�w) and the mixed
formulation (d�V). A stabilisation technique for mixed
problems, originally developed for Stokes problems and
known as the PSPG formulation, has been successfully
applied to the mixed electrostatic formulation. It has been
shown that the formulations ensuring the continuity of the
normal component of j, i.e. the vector potential and mixed
formulations, lead to a better charge conservation than the
scalar potential formulation, even if V is discretised with
second-order elements. The mixed formulation has on the
vector potential formulation the advantage that the
boundary conditions on V can be easily imposed.
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