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Abstract The expressions of the material derivative of differential forms in the language of
vector analysis are introduced. These formulae allow us to describe naturally the electromechanical
coupling, and the coupling term appears to be a volume integral. A general approach to compute
forces is then proposed, which takes that fact into consideration. The method is applicable in 2D
and 3D with dual formulations. Numerical evidences of its efficiency are given.

1. Introduction

The existence of such a long controversy about the computation of electromagnetic
(EM) forces undoubtedly ascribes to the fact that the problem cannot be solved with the
tools of vector analysis. The mathematical analysis of this problem requires indeed to
consider a deforming body, and to apply adequately energy conservation rules to it.
The correct background to perform such operations is differential geometry (Schutz,
1980), and one needs in particular the Lie derivative. Fortunately, the final results of the
analysis can be expressed in the language of vector analysis. This gives in Section II, a
set of formulae, which must be considered as axioms, and are used in Section Il to
solve the problem of the electromechanical coupling in a continuous medium. It turns
out that the fundamental representation of the electromechanical coupling term has the
form of a stress-strain product, where the Maxwell stress tensor plays by definition the
role of the stress. This leads, in Section IV, to a new approach for the computation of
EM forces, which is more clearly backed by the theory.

2. Lie derivative and material derivative

Let M be a continuous set of points and u,(X), X € M, ¢ € [a,b] be the trajectory of
point X in an Euclidean space E. The set of trajectories of all points in M defines a flow.
We call placement the map
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The flow, which is entirely defined by the placement map, is assumed to be smooth and
regular enough to be differentiable and invertible when required.
The velocity v at point x = u;(X) is the vector tangent to the curve u,(X). It is

defined by
d
V= a—i Mt(X)

and belongs to T, E, the set of all vectors anchored at point x. The velocity field is the
set of tangent vectors to all trajectories of the flow at a given instant of time.
The notions of length and angle are defined in E by means of the metric

g:v,wE T, Ewr— gv,w) =gijviwj eER 2

which, at each point x, associates a number to any pair of anchored vectors. An
Euclidean space is characterised by g; = &;.

Let us now consider a small piece of curve in E. As each point of the curve
follows its own trajectory, the curve. deforms, ie. it changes in length, orientation,
curvature, etc. But the so-called vectors, which are by definition the vectors tangent
to all curves in E, are also transformed by the flow, and so is it as well in general for
all tensors. All required information to describe that transformation, called
convection, is actually contained in the placement map p,. So a tensor field T
becomes prrq;(p; 1 T) at time ¢+dt by the only effect of flow convection. If now
T # prvar(p; 1 T), the tensor field has got a non-zero derivative along the flow. The
Lie derivative of the tensor field £, T (Schutz, 1980) is precisely that derivative along
the flow. It is defined by

T p,(p,:}dtT) -T
AT == @

Finally, if the tensor field T depends also on time, the material derivative is
defined by:

oT

Y £yT, 4
where a notation with the velocity field explicitly mentioned has been prefered in
order to remind that the material derivative depends on the flow.

Differential geometry provides the rules to compute the material derivative and the
material derivative of any tensor field, and in particular of the differential forms
(Bossavit, 1988; Schutz, 1980), which are the particular tensor fields we need in this
paper. In a three dimensional space, there exist four kinds of differential forms called
p-forms, p = 0,1, 2,3, which all have a specific expression of the material derivative,
Le.

LT =

) J
a(fvf:a_};"'vkaf; ®)
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respectively, for the 0-forms (e.g. a scalar function), the 1-forms (e.g. the magnetic field),
the 2-forms (e.g. the induction field) and the 3-forms (e.g. the energy density). With
obvious definitions, this can be written with more concise notations

Sof =f | )
Zh=h+(Vv)-h (10)
Lb=b—b-(Vv)+btr(Vv) 1)
Lvp=p+tr(Vv)p ' (12)

where 2 denotes the total derivative of z(t, x%), obtained by applying the chain rule,
component by component if z is a vector field. Finally, the material derivative allows us
to compute the time derivative of integrals over moving domains:

d

A pdQ = / Lopdod. 13

3. Maxwell stress tensor

In an electromechanical problem, the variation of the EM energy functional is not equal
to the variation (in the sense of change) of the EM energy stored in the system. One
misses indeed the work Wy done by the EM forces. Let the EM energy density p* of
an electromechanical system {} be a known function of the induction field b. By means
of the formulae (9)-(13) and the classical chain rule of derivatives, the time derivative of
the EM energy ¥ writes

i v v v ap”
‘l’=/ffvp =/(P + tr(Vv)p )=/(—_
Q Q a \ ob

- pY apY _ pY L v

The first term at the equation (14) is the definition of the change in stored EM energy
and the second term is the mechanical power Wgy received by the EM system.
A similar calculation for the EM coenergy & gives

b = iff..gh —/ -Vv-h — tr(V 15
—/n sh v Sh v (Vw)p® (15)

b+ tr(Vv)p¥
(14)




where the first term at the rhs is the change in stored EM coenergy and the second term
15 — WEM- .

One can now notice that Wy does not involve the velocity field v itself but only its
gradient Vv. The Maxwell stress tensor is by definition the dual of the latter:

WEM = /Q oEm - Vv. (16)
Simple calculations give
et (Y Ly
_w® e

where [ is the identity matrix, respectively, for the formulations in b and in h. Note the
use of the dyadic (undotted) vector product (vw); = v'w’ and the tensor product
a:b=a;b;.

It should be carefully noted that the Maxwell stress tensor oy is defined as a true
mechanical stress, i.e. its work is delivered by thé mechanical system and received by
the electromagnetic system. On the other hand, the EM forces defined by pf = div opm
are magnetic forces. Their work is delivered by the electromagnetic system and
received by the mechanical system. This should be clearer after integrating equation

(16) by part:
/UEM:VV=—/p{3M'V+/ n-ogM'v 19)
Q Q an

with € the boundary of Q) and n the exterior normal to 3{}. Moreover, being defined
as the EM energy dual of Vv at the local level, the Maxwell stress tensor can, as such,
directly play the role of an applied stress in the structural equations of the system

div(o + ogm) + pf =0, (20)

which is easier than coupling through the EM forces pgy, since the latter are singular
at material interfaces.

4. The eggshell approach

Let us consider a system £ with a piece Y that can move in the aperture of a C-core X,
not completely represented here. An eggshell shaped region S is defined, that encloses
the moving piece (Figure 1) and whose thickness need not be constant. The region Zis
defined such that X U Y U S U Z = Q; Zand S only contain air. The problem is now
how to compute the EM forces on Y. The natural mechanical unknowns of this problem
are the velocities v (or equivalently the displacements) at all nodes of the region Y. We
have seen however that the coupling term equation (16) involves a velocity field, virtual
or not, defined on the whole study domain Q. We must thus first understand the role
played by the velocity field v in 0— Y. For the sake of simplicity, X and a{) are
assumed rigid and fixed, i.e. we are only interested in the forces on Y. We have then
from (19)
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Figure 1.

Geometry of the c-core
and detail of the mesh in
the airgap

Z
i X
S..
1Y
U‘EM:VV"—"—/ n-° oMV, (21)
Q-Y Y

because v = 0 on X U 8Q (clamped rigid parts) and pfy; =0 in Z U S (air). This
means that the contribution of the exterior of Y to the coupling term is completely
determined by the value of the velocity field on its boundary 3Y. Consequently, the
velocity field v is arbitrary in the interior of Z U S, but it must connect continuously
with v on 8, which is not zero. The velocity field blurs thus necessarily out of the
moving region. The idea of the eggshell approach is to set the velocity field to zero in Z,
confining the non-zero velocity field in the shell S, and of course in Y.

Let us now state that the moving piece Y is rigid and shifted by an infinitesimal
displacement 8u. The only region that deforms is S. The (virtual) velocity field
associated with that deformation, and its gradient are

v=yd1, Vv=Vydu, (22)

where -y is any smooth function whose value is 1 on the inner surface of the shell and 0
on the outer surface. Using (16), one can write

WEM = —-F-du= / opum - VvdS, (23)
S
where F is the resultant force on Y, and finally, using equation (22), one gets
=~ [ ome-vyas, (24)
s

which is the eggshell formula for the EM resultant force on a rigid body. Only the
Maxwell stress tensor of empty space is required here. The formula applies in 2D and
in 3D. It applies also directly to dual formulations, provided one uses equation (17) for
the b-formulation and equation (18) for the h-formulation. The eggshell formula can be
seen as a generalized variant of Arkkio’s formula for torque in electrical machines
(Arkkio, 1987). The Coulomb’s technique to compute nodal EM forces (local derivative
of the Jacobian, Coulomb, 1983) can also be considered as the independent application



of the eggshell method to the different nodes of a mesh, the support of a node-based
shape function being the eggshell around that node. At the limit for an infinitely thin
shell, one finds back the classical result that the resultant EM force on a rigid body is
given by the flux of the Maxwell stress tensor through an enclosing surface.

The eggshell formula for rigid body movement is tested in 2D on the C-core problem
(Figure 1). The moving piece ¥ (3 X 4 mm) is inserted in the magnetic core X, leaving an
airgap of 0.4mm on both sides. The magnetic horizontal force tends to bring the
moving piece back in alignment with the C-core. The problem is solved with dual finite
element formulations, so as to check the accuracy of the computed fields and forces,
(Figure 2). The constitutive law b = w(Jh))h with

if h=<hg
if h> hgy

a—+ g

a+ (25)

wu(h) =

1
dh+c

with ¢ = 1/ugye — dhyy, is representative of a saturable material and has the technical
advantage that it can be inverted, i.e. h can be expressed as a function of b, and the
(cojenergy functionals can be integrated analytically. The parameters were set to
phix = 7.55% 1073, hg, = 103.35, a = 1.5% 107° and d = 0.625 (all quantities in SI
units). '

In Figure 3, the global forces computed with the eggshell formula (24) are compared
with the forces computed by a direct differentiation of the EM (co)energy, using a
second order finite difference scheme for the derivative. A perfect match is observed,
which shows the validity of the eggshell approach. The eggshell formula however,
requires only one solution of the system whereas direct differentiation requires several
solutions, with slightly changed positions of the moving body. The difference between
the values computed with the b-formulations and with the h-formulation are due to the
discretisation error. For variational consistency, it is better not to mix fields from
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Figure 2.

Energy ¥, coenergy @
and complementary
energy fob-hdQ-® as
a function of the number of
nodes. The difference
between energy and
complementary energy is
a measure of the global
discretisation error
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Figure 3.

Comparison of the
horizontal forces
computed with the
eggshell method and the
direct derivation of energy
(b-formulation) or of
coenergy (h-formulation)

Figure 4.
Effect of a variational
inconsistency
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different formulations when evaluating the Maxwell stress tensor, i.e. for instance, not
to mix the h field from a h-formulations with the b field from a b-formulations,
although this may seem a good idea from the point of view of the individual accuracy
of the different fields. Figure 4 shows indeed that the forces computed with the mixed

expression

are less accurate.
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The eggshell approach gives a certain freedom in the definition of the shell. This is one
of its advantages. The shape is actually free and the shell needs not be in contact with
the moving piece. The effect of the thickness of the shell and of the distance between
the moving piece and the shell are shown at Figures 5 and 6, respectively. One sees that
a better accuracy is obtained if the shell is not placed directly in contact with the
magnetic moving piece, because of the singularity of EM fields at material corners.
Another way to define the eggshell is to select all finite elements in ) — Y that have at
least one node on 8Y. The y function is then the sum of the shape functions of the
nodes of 3Y.
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Figure 5.
Effect of the thickness
of the shell

Figure 6.

Effect of not placing the
shell in contact with the
ferromagnetic moving
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Figure 7.

Eggshell around a quarter
of the rectangular
magnetic frame, and
deformed state

This way of defining the eggshell has been used in 3D to compute the deformation of a
rectangular magnetic frame, of which by symmetry only one quarter was modelled

(Figure 7).
Let Y be the deforming piece. The weak form of equation (20) can be written

/O':Vv’+/0]3M:V\/+/pf-v’=O vv (26)
Y Q Y

so as to make explicit use of the coupling term equation (16). As the trial functions v/
are the shape functions of the nodes of Y, the integration of the coupling term can be
limited to YU S, where the egsshell S is the set of all finite elements in ) — Y that
have at least one node on 8Y. In this case, the eggshell approach allows a very
straightforward implementation of an electromechanical problem. It avoids to compute
the trace of oy on 8Y, making benefit of the existing magnetic mesh outside the
deforming piece

5. Conclusion

The Lie derivative and the material derivative of differential forms have been
introduced, in the language of vector analysis. They allow us to determine the
fundamental form of the electromechanical coupling term in continuous media. The
eggshell approach is based on that particular form and the classical methods to
compute EM forces (Arkkio’s method, Coulomb’s method, integration of Maxwell
stress tensor on an enclosing surface, ...) are particular cases of it. However, the
eggshell approach is more directly and more clearly linked with the underlying energy
considerations at the continuous and at the discrete level, for rigid and non-rigid
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movements. This makes this approach easier to understand and to implement in a
finite element program.
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