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Abstract
 Eddy-current computations are becoming more commonly used as both, the computational power

and the demand for more accurate eddy-current loss estimation increase. Several different
formulations for the calculation of eddy currents using the finite-element method are known [1]. For
industrial applications such as induction furnaces or claw-pole alternators, fast and reliably stable
models are required. This paper compares different formulations based on the use of the magnetic
vector potential with regard to the stability of the convergence.

Formulations
 A very thorough overview over different formulations for eddy-current computations is given in

[1], with a focus on a time-harmonic model. For the simulation of electrical machines, formulations
using the magnetic vector potential A

r
are most commonly used. The eddy currents are taken into

account using either the electric scalar potential V , the electric vector potential T
r

 or only the time
derivative of the magnetic vector potential. The VAA ,

rr
− formulation is generally considered to be the

best in terms of stability and convergence rate. The Galerkin formulation for the time-harmonic model
reads:
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nΩ denotes regions without eddy currents. cΩ denotes eddy-current regions. If only short-circuited
eddy-current regions exist in the model. Equation (2) and the term involving the electric scalar
potential can be eliminated, resulting in the A

r
formulation. The equations (1) and (2) can be

transformed into the time domain for a transient model, using the Galerkin scheme [2], resulting e.g.
for the magnetic vector potential in:
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3
2=τ  according to the Galerkin scheme. With this, the transient form of the VAA ,

rr
− formulation

yields:
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The TAA
rrr

,− formulation for the transient model reads:
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These formulations are implemented in an open-source software package (iMOOSE [3]). For the
solution of the system of equations, solvers from the ITL-Package [4] are used. For the symmetric case
(all time-harmonic models and all transient except for the TAA

rrr
,− formulation) a CG solver with

Cholesky preconditioning is used. For the transient TAA
rrr

,− different preconditioner/solver
combinations are possible, e.g. BiCG with ILU preconditioner.

Results

The different formulations are applied to the simulation of an induction furnace. Figure 1(a) shows
the mechanical model of the device. A crucible containing the melt is surrounded by a coil. 12 yoke
parts are located behind the coil to guide the magnetic flux and protect the steel construction of the
furnace against stray fluxes and undesired eddy currents. For the electromagnetic calculation, only the
relevant parts – melt, coil and yoke – are modeled as a 30o section due to the symmetry of the device.

(a) The induction furnace (b) Flux density solution (c) Current density solution (in the
melt)

Figure 1: The induction furnace (a), flux density (b) and current density (c) solutions.

The electromagnetic mesh consists of about 475,000 first order tetrahedra. A current is imposed in
the coil windings. The melt is modeled as an eddy-current region with a conductivity of

( ) 1533.8 −Ω+ me . The operating frequency of the induction furnace is 250 Hz, the coil current 18 kA.
All tested formulations yield similar numerical results.

Figure 2 shows the convergence behavior of the three different formulations for the time-harmonic
model. The number of unknowns and the number of CG steps required to achieve a relative residuum
of 10-7 are summarized in Table 1. It can be seen that, as expected, the VAA ,

rr
− formulation gives the

fastest convergence, while the TAA
rrr

,− formulation needs the highest number of CG steps, which
combined with the highest number of unknowns gives the longest computation time.
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Formulation # Unknowns # CG Steps

VAA ,
rr

− 573.581 500

A
r 571.982 722

TAA
rrr

,− 580.997 823

Figure 2: Convergence plot for the time harmonic model. Table 1: Nr of unknowns and CG steps for the different
formulations.

In the next step the operating frequency is varied. Additionally 50 Hz and 1 kHz are calculated. The
results are summarized in Figure 3. Figure 4(a) shows the convergence behavior of all three
formulations for a higher conductivity ( ( ) 160.4 −Ω+ me ) in the melt.

(a) VAA ,
rr

− formulation (b) A
r

formulation (c) TAA
rrr

,− formulation

Figure 3: Convergence behavior at different frequencies for VAA ,
rr

− (a), A
r

(b) and TAA
rrr

,− (c) formulation.

18

67.45625

83

38

94.925

115

0

20

40

60

80

100

120

140

Min Avg Max

ove r 160 tim e ste ps

C
G

 S
te

ps A
A-A,V

(a) Melt conductivity ( ) 160.4 −Ω+ me (b) Convergence of transient model (c) No of CG steps over time steps for
transient model

Figure 4: Convergence behavior for a higher melt conductivity (a) and the transient model (b,c).

The results behave in the expected way. The VAA ,
rr

−  formulation shows only a slightly higher

number of CG steps at increasing frequencies or conductivity. The A
r

 formulation gives better
convergence rates at higher frequencies. This is due to the fact, that at the boundaries of the eddy-
current region, the condition 0=nJ

r
 is only a natural boundary condition and not an enforced one and

thus easier satisfied with a large jump in the conductivity. The TAA
rrr

,−  formulation needs more CG

steps to converge, especially at higher frequencies. For the transient model though, the A
r

 formulation
gives a faster convergence for all time steps, as depicted in Figure 4(b) and (c).
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Another tested device is the TEAM Workshop problem No. 7 [5]. Figure 5(a) shows the model with
the simulated flux density distribution. Figure 5(b) shows the very good agreement between the
measurement results provided by [5] and the simulation results, both with the time-harmonic and the
transient model. The convergence behavior is plotted in Figure 6. The TAA

rrr
,− formulation cannot be

used here since the eddy-current region is multiply connected.

(a) Flux density distribution (b) Current density along line

Figure 5: Team No. 7 Workshop problem. Flux density distribution (a) and current density along a line (b).

(c) Convergence for harmonic model (d) Convergence for transient model

Figure 6: Convergence behavior of the time-harmonic (a) and transient simulation (b) of Team07 Workshop problem.

The results for the time-harmonic model again show the superiority of the VAA ,
rr

− formulation in
terms of fast convergence. Nevertheless, for the transient model there is no difference in the
convergence rate between both formulations. Combined with the higher number of unknowns in the
case of the VAA ,

rr
− formulation it results in a larger computation time and thus a disadvantage of the

VAA ,
rr

−  formulation.

Conclusion
In this paper three different formulations for eddy-current computations have been compared, both

for a time-harmonic and a transient model. The formulations have been applied to the simulation of an
induction furnace and the TEAM Workshop problem No. 7. The combination of a magnetic vector
potential with an electric scalar potential gives the best and most stable convergence rate in most of
the cases, especially for the time-harmonic model. This does not always hold true for the transient
case. The reason of this difference has to be further studied.
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