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CONVERGENCE BEHAVIOUR OF DIFFERENT FORMULATIONS FOR
TIME-HARMONIC AND TRANSIENT EDDY-CURRENT COMPUTATIONS IN 3D

D van Riesen, C Kaehler, G Henneberger
Aachen University (RWTH), Germany

Eddy-current calculation in electromagnetical devices
is becoming more important, as both the available
computational power and the need for power loss re-
duction increase. Several different formulations for
the calculation of eddy currents using the finite-ele-
ment method (FEM) have been proposed. For 3D
applications in static cases the magnetic vector poten-
tial (A') with edge elements is the most common case.
The static formulation can be extended to account
for eddy current effects using an extra term with the
same magnetic vector potential, with an electric vec-
tor potential (T') or with an electric scalar potential
(V). The A— A,V formulation is commonly believed
to be the best in terms of stability and convergence
rate. In this paper the three different formulations,
in a time-harmonic and a transient case for a simple
C-core model, the problem given in the TEAM Work-
shop No. 7, and for a claw-pole alternator are com-
pared. The TEAM Workshop problem is also verified
against measurement results as obtained by Fujiwara
et al (1). All solvers are part of the IMOOSE software
package (2).

FORMULATIONS

A very thorough overview over the above mentioned

formulations for eddy-current analysis is given by Biré.

(3) for the time-harmonic analysis. For the transient
calculation, the formulations are extended with the
time-dependent values discretized according to the
Galerkin scheme, resulting e.g. for the magnetic vec-
tor potential:

Aty = (1-0)4,+04,1 (1)
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with © = 2, cf. Zienkiewicz et al (4).

All three formulations share a common formulation
for non-eddy-current regions which is equal to the
static case (with the added time dependency) and is
therefore not displayed here. The A— A,V formula-
tion in Galerkin form reads in eddy-current regions:
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The A — /1', T formulation is given here in Galerkin
form for eddy-current regions:
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The /f, /_1'* formulation is not given here as it can be
deducted from (3) by suppressing the term with the
electric scalar potential.

RESULTS

Three different models are used to test the conver-
gence behaviour of the different formulations. A sim-
ple C-Core with a conducting plate in the yoke, the
TEAM Workshop Problem No 7 (with results that
are verified against the measurements by Fujiwara et
al (1)) and a claw pole alternator as a larger scale
problem. The A— f_l', T formulation as implemented
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in iIMOOSE is not suited for the multiply connected
eddy-current region of the TEAM problem, and does
not converge for realistic conductivity values in the
case of the claw pole alternator. A comparison be-
tween the A and A — A, T formulations was done by
the authors in (5).
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Figure 1: Flux-density and current-density distribu-
tion for TEAM Workshop No 7
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Figure 2: Model of the yoke and the flux density dis-
tribution on the claws of the claw pole alternator

Figs. 3 and 4 and tables 1 and 2 show the conver-
gence of different calculations. For the time-harmonic
analysis, both for the C-Core and the TEAM Work-
shop, the convergence behaviour is significantly bet-
ter for the A _A', V -formulation, as expected. For the
claw pole alternator, the A- ff, V - formulation re-
quires slightly less CG iterations, at the cost of more
Newton iterations (8 vs. 6) and more unknowns as
compared to the A -formulation. Thus, the execu-
tion times are similar, even a little longer for the
A -formulation. Nevertheless, as stated in (5), the
Aand A— A', T -formulations have stability problems
at lower and higher conductivities respectively, while
the A — A,V -formulation is stable over the whole
range of frequencies and conductivities.

Table 1: Time, number of CG steps, and matrix di-.

mension for the time-harmonic case, TEAM Problem

Formulation time (sec.) # steps Dim.
1 1258 645 213200
A—AV 800 298 219864
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Figure 3: Convergence for the harmonic and transient
calculation of TEAM Workshop Problem No 7
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Figure 4: Convergence for the harmonic calculation
of the C-Core model and the transient calculation of
the claw pole alternator

Table 2: Time, number of CG steps, and matrix di-
mension for the transient case, TEAM problem

Formulation time (sec.) # steps Dim.

A 44882 135 213200

A—AV 48387 140 219864
CONCLUSION

The /_fwff, V -formulation is generally believed to give
faster and more stable converg‘ence_'foi‘ eddy-current -
problems than the A or the A — A, T -formulation.
This can be reproduced in the time-harmonic case,
while in the transient case there is not such a huge
advantage. This has to be further investigated.
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