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I. INTRODUCTION

Due to the customer’s satisfaction the acoustics in cars
are getting more and more part of research. Nowa-
days, there are many electromagnetic devices in cars,
which have replaced mechanical systems. One exam-
ple for this trend is an electrical machine replacing the
hydraulic power-steering drive. In this paper an induc-
tion machine with squirrel-cage rotor is analyzed re-
garding the electromagnetically excited audible noise.
This motor is employed as power-steering drive. The
aim of this work is to predict the noise generated by
the device. The machine is simulated using the Finite-
Element Method (FEM) for the electromagnetic and
the structural-dynamic model and the Boundary-Element
Method (BEM) for the noise estimation.

II. FEM/BEM SIMULATION

The computational process of acoustic simulation of
the induction machine is divided into three steps:

1. electromagnetic FEM simulation,

2. structural-dynamic FEM computation, and the

3. acoustic BEM calculation.

For all three steps models of the machine geometry have
to be built and discretized which take the relevant parts
of the machine into account, respectively.

ELECTROMAGNETIC SIMULATION

In the case of induction machines with squirrel-cage
rotor the rotor-bar currents are unknown. Therefore, a
transient calculation, which takes the rotational move-
ment into account, has to be performed. In order to
reduce the computation time the machine is calculated
in 2 dimensions at first. The ~A-formulation used in the
solver iMOOSE.tsa2d reads:∫

Γ

(
∇αi · ν · ∇Az(t) + αi · σ · ∂

∂tAz(t)
)
dΓ

=
∫
Γ

(
αi · Jz0(t) +∇× (αi ~ez) · ν ~Br

)
dΓ , (1)

∀ i = 1, 2, . . . , nn .

The equation given in Galerkin formulation [1] is solved
in the entire model region Γ. The material parameters
ν and σ represent the non-linear reluctivity and the lin-
ear conductivity. The shape function of an element is
defined by αi. First order triangular shaped elements
are used. Jz0(t) describes the z-component of the given
coil current-density and ~Br is the remanence of pos-
sible permanent magnets which of course do not exist

in induction machines. For linear interpolation of the
time-dependent variables the first order time-step algo-
rithm is applied and A(t) can be written as a function
of time:

A(t) = (1−Θ)An + ΘAn+1 (2)

Θ =
t− tn

tn+1 − tn
=

t− tn
∆t

; 0 ≤ Θ ≤ 1 . (3)

Θ is the weighting parameter and set to Θ = 2
3 accord-

ing to the Galerkin scheme [2]. Setting Θ = 2
3 results

in fastest convergence for the transient simulation.
The induction machine regarded has NS = 36 sta-

tor and NR = 26 rotor slots. Due to the number of
rotor slots the motor shows a 180◦ symmetry. There-
fore, a half (180◦) FEM-model is used. The 2D elec-
tromagnetic model consists of 6,882 first order, trian-
gular elements. 4,000 time steps are calculated at rated
speed nN = 1, 200 rpm and a stator frequency of f1 =
48.96 Hz. The resulting torque behavior of the transient
calculation is shown in Fig. 1. When the transient phe-
nomenon has died out the time behavior is analyzed.
The average torque is T 2D = 4.312 Nm.

Figure 1: Resulting Torque Obtained from the 2D Model.

With
Jz = −σ

Azn+1 −Azn

∆t
(4)

the rotor-bar current-density Jz is evaluated. Az is the
z-component of the magnetic vector potential ~A. The
conductivity of the rotor bars is represented by σ. The
time step is ∆t.

Fig. 2 shows the resulting rotor-bar currents for four
bars. The frequency is the slip frequency f2 = 8.96 Hz.
The maximal current amplitude reached for all bars is
Imax = 248.32 A and the amplitude of the fundamental
is Î1 = 220.86 A. The first significant harmonic order is
the fifth order of the stator frequency at f5 = 244.8 Hz
with Î5 = 23.15 A which is modulated with twice the
slip frequency: f = 226.88 Hz and f = 262.72 Hz.
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Figure 2: Resulting Rotor-Bar Currents for Four Rotor
Bars Obtained from the 2D Model.

The resulting current densities are used by the static,
3-dimensional FEM model, which computes the ma-
chine using iMOOSE.stat3d. The 3D static electromag-
netic solver formulation applying the magnetic vector
potential ~A in Galerkin scheme reads [3]:∫

Ω
∇× ~αi · ν · ∇ × ~A dΩ

=
∫
Ω

(
~αi · ~J0 +∇× ~αi · ν ~Br

)
dΩ , (5)

∀ i = 1, 2, . . . , nn .

Both solvers from equations (1) and (5) are part of the
open-source software iMOOSE [4].

The FEM-model consists of 288,782 first order tetra-
hedral elements. For computation-time saving-reasons
the axial length of the model is reduced to a third of the
iron length. The skewing angle (front to back angle) is
kept the same. Fig. 3 shows the electromagnetic model
of the motor.

Figure 3: 3D FEM Model for Electromagnetic Simulation.

The stator winding head and the short-circuit ring
of the rotor are reduced to extended bars, which are
surrounded by air. This allows a more realistic con-
sideration of the front leakage than in case of the 2D
model. There, of course no front leakage can be re-
garded. The figure also shows the two-layer winding of
the stator and the complicated modeling of the skewed
rotor. To avoid the slicing of rotor bars which would
result in very difficult to compute current excitations
the rotor is modeled in such a way that it is twisted in
the same way the bars are.

The machine is calculated at N = 120 rotor po-
sitions. The skewing of the rotor is kept the same.

The mechanical angle between each static time step is
∆α = 3◦. The machine’s skewing angle is γ = 10◦.
For each time step the rotor is detached from the sta-
tor, rotated, and reattached. The models are generated
automatically with the FEM-tool ANSYS [5]. Fig. 4
shows the flux-density distribution for one time step
exemplary.

Figure 4: Flux-Density Distribution for the 3D Model.

STRUCTURAL-DYNAMIC SIMULATION

From the flux-density distribution the surface-force
density on the stator teeth can be derived using the
Maxwell-stress tensor [3][6]. The formulation reads:

~σ =
1
2
~n12 [Bn (H1n −H2n)− (w′

1 − w′
2)] . (6)

The index n represents the normal components of ~B
and ~H. ~n12 is the normal vector of the boundary sur-
face from region 2 to 1. w′

1 and w′
2 are the magnetic

co-energy densities of these regions. Lorentz forces and
forces stemming from magnetostriction can be neglected
since they are much lower than the electromagnetic
forces.

Fig. 5 shows the surface-force density distribution
for one time step. The skewing of the rotor is reflected

Figure 5: Surface-Force Density Distribution on the Stator
Teeth for One Time Step (Only Stator Lamination Shown).

in the force excitation of the stator teeth. Depending
on the rotational direction the up-running edge of each
tooth is excited highest on the front or on the back side.



Figure 6: Exploded View of the Structure-Dynamic Model of the Induction Machine with Squirrel-Cage Rotor.

In a next step the force excitation has to be analyzed.
For each element of the stator teeth connected to the air
gap the values of all time steps are collected and then
transformed into the frequency domain using the Fast-
Fourier Transformation (FFT) [7]. This is a very time
intensive step in the acoustic analysis of an electrical
machine, because the data is distributed to each time
step but must be assigned to each element. This means,
that for each of the 20,602 stator-teeth surface elements
which are connected to the air gap, 120 force-density
values must be collected and analyzed using the FFT.
Finally the FFT values must be resorted to two files per
frequency which hold the imaginary and the real part
of the surface-force density excitation. The resulting
spectrum (absolute values) for one single stator-tooth
element is depicted in Fig. 7.

Figure 7: Spectrum of the Surface-Force Density Excita-
tion of One Single Stator-Tooth Surface Element (Absolute-
Values).

Due to the time step ∆t and the number of time
steps N the cut-off frequency is fco = 1, 200 Hz with
∆f = 20Hz which is equal to the rotor speed. The har-
monic orders detected in the spectrum are the double
stator frequency (97.92 Hz), the first and second rotor
slot harmonic (520Hz and 1040 Hz), and their modu-
lations with the double stator frequency [8][9][10]. The
harmonic orders with the highest magnitudes are se-
lected for the further study.

The next step is to calculate the deformation of the
entire structure of the machine. Therefore, a complete
mechanical model of the machine must be generated
consisting of the stator and rotor with their windings,
the shaft, the case, the bearings, and the casing caps.
In order to reduce the number of finite elements the
rotor is simplified and modeled as a cylinder. The sta-

tor tooth geometry is reduced to a rectangular shape.
The number of first order tetrahedral elements of the
mechanical model is 90,065. The solver transforms the
first order elements to second order. Fig. 6 shows an
exploded view of the entire model.

With the mechanical model the deformation of the
structure of the induction machine is computed for the
selected frequencies in the following step. Therefore,
the surface-force density excitation is transformed from
the electromagnetic model to the mechanical model for
each of the selected frequencies.

The deformation-solver formulation reads [11]:

K ·D + F · Ḋ + M · D̈ = R . (7)

K is the matrix of the stiffness of all elements of the
model, M represents the mass, F is the damping, D
is the deformation, and R is the exciting force. Due to
harmonic analysis (7) is simplified to:

(K − ω2 ·M + jω · F ) ·D = R . (8)

ω = 2π f is the angular frequency. The damping F
can be neglected since the mechanical model is built
of material with high elastic stress modules. If for in-
stance rubber is used the damping cannot be neglected.
Therefore, the solver is not able to regard such elas-
tic materials. Initial tension is not regarded as well.
Usually, initial tension mainly arises from temperature
effects which are not subject of the investigations.

K is the sum of all element-stiffness matrices ki:

K =
n∑

i=1

ki =
n∑

i=1

∫
Ωi

BT
i ·Hi ·Bi dΩi . (9)

Hi is the elasticity matrix for each element [2]:

Hi =

E·(1−ν)
(1+ν)·(1−2ν) ·


1 a a 0 0 0
a 1 a 0 0 0
a a 1 0 0 0
0 0 0 b 0 0
0 0 0 0 b 0
0 0 0 0 0 b

 , (10)

with
a =

ν

1− ν
and b =

1− 2ν

2(1− ν)
. (11)

ν is Poisson’s ratio and E the elastic modulus. Bi is
the differential matrix for the elements, where BT

i is



the transposed of it. With α1 . . . α4 being the degrees
of freedom of the first-order tetrahedral elements Bi

reads [11]:

Bi =


∂α1
∂x

0 0 · · · ∂α4
∂x

0 0

0
∂α1
∂y

0 · · · 0
∂α4
∂y

0

0 0
∂α1
∂z

· · · 0 0
∂α4
∂z

∂α1
∂y

∂α1
∂x

0 · · · ∂α4
∂y

∂α4
∂x

0

0
∂α1
∂z

∂α1
∂y

· · · 0
∂α4
∂z

∂α4
∂y

∂α1
∂z

0
∂α1
∂x

· · · ∂α4
∂z

0
∂α4
∂x

 (12)

The matrices M , F , D, and R of equations (7) and
(8) are built in an analogue way to K from equation
(9). In order to solve the boundary-value problem of
the deformations entirely a boundary condition must
be regarded. It is necessary to define at least one node
of the model which is fixed. This is a Dirichlet condi-
tion. Here, the surface nodes of the mounting plate are
selected and fixed in the solving process (see Fig. 6).

Fig. 8 shows exemplarily the strongly emphasized
real part of the deformation of the stator lamination
and the casing for f = 620Hz. The emphasizing factor
is set to 6,750,000.

(a) Deformation of Stator and Casing.

(b) Deformation of Stator.

Figure 8: Real Part of the Deformation for f = 620 Hz.

Due to the even number of pole pairs p = 2 and the
even number of rotor slots NR = 26 of the induction
machine the mechanical orders of deformation can only
be even numbers as well: r = 0, 2, 4, . . . [12]. Some
orders found are depicted in Fig. 9. r = 2 is found

for f = 720Hz, r = 4 for f = 1040Hz, and r = 6 for
f = 620Hz. Small mechanical orders have the strongest
impact in respect of the deformation amplitude. For
this reason numbers greater than r = 6 can be neglected
in general.

(a) r = 2. (b) r = 4. (c) r = 6.

Figure 9: Mechanical Orders of the Deformation.

The deformation of the structure of the machine can
be used for the acoustic simulation described in the fol-
lowing section. Alternatively the structure-borne sound
can be derived from its results. Here, simulation re-
sults are compared to acceleration measurements per-
formed by the industrial partner. The reference value
is aref = 1 µm

s2 and the level LS is defined by:

LS = 20 · log
a

aref
dB . (13)

a is the acceleration of the specific node at the regarded
frequency f , which is derived from the displacement u.
ω = 2πf is the angular frequency. In respect of the
sinusoidal deformation the acceleration vector is defined
by:

~a =

 atan

arad

aaxial

 =

 −ω2 · utan

−ω2 · urad

−ω2 · uaxial

 with (14)

∂2u(t)
∂t2

=
∂2

∂t2
û · cos(jωt− ϕ) = −ω2 · u(t) . (15)

ϕ is the phase angle and j2 = −1. The displacement is
a vector of complex numbers in Cartesian coordinates:

~u =

 x
y
z

 =

 <{x}+ j={x}
<{y}+ j={y}
<{z}+ j={z}

 . (16)

In order to provide the displacement vector as local co-
ordinates with tangential, radial, and axial component
the following transformation has to be performed:

~ulocal =

 utan

urad

uaxial

 =

 ~u · ~etan

~u · ~erad

~u · ~eaxial


=

 x · ~ex · ~etan + y · ~ey · ~etan + z · ~ez · ~etan

x · ~ex · ~erad + y · ~ey · ~erad + z · ~ez · ~erad

x · ~ex · ~eaxial + y · ~ey · ~eaxial + z · ~ez · ~eaxial

 . (17)

The three components of the local coordinate systems
are equal to those of a global cylindrical coordinate sys-
tem with the axial component in direction of the shaft,



the radial is normal onto the rotor cylinder and the
tangential in direction of the angle ϕ [7].

Table 1 shows some results of the structure-borne
sound-simulation. The highest amplitudes are reached
for the first rotor-slot harmonic at f26 = 26 · fR =
520 Hz, the first stator-slot harmonic f36 = 36 · fR =
720 Hz, f = 940 Hz, and f = 1040 Hz. The level for
the axial component shows the smallest values in all
cases. These results suit the acceleration measurements
performed by the industrial partner very well.

Table 1: Results of the Structure-Borne Sound-Simulation.

f [Hz] LS,rad [dB] LS,tan [Hz] LS,axial [dB]
100 59.4 58.5 44.0
420 85.2 83.8 68.4
520 82.6 82.1 66.9
620 59.9 64.5 48.5
720 85.4 84.2 68.8
940 88.5 87.5 46.8

1040 82.4 80.5 55.7
1140 67.7 67.0 51.4

ACOUSTIC SIMULATION

The last step of the analysis is the acoustic simula-
tion of the machine. Acoustic noise is a result of the
deformation of the surface of a body. Therefore, only
the deformation of the surfaces has to be taken into
account and the Boundary-Element Method (BEM) is
applied for the acoustic computation. The equation to
be solved reads:

H · p = G · ~v . (18)

p is the complex sound pressure which is the result of
the acoustic simulation and ~v is the complex velocity
vector of all nodes of the BEM model.

Figure 10: The Acoustic Model of the Machine.

For the acoustic simulation a third model of the ma-
chine is generated by extracting the surface mesh of the

structural-dynamic model. The resulting model con-
sists of 7,998 triangular shell elements (Fig. 10).

After the acoustic model has been computed the
sound pressure is estimated in a post-processing step.
An analysis hemisphere is located in a distance of
d = 1 m around the machine. The induction machine
is positioned in the center of the ground plane. The
ground plane itself is reverberant. Of course, different
analysis surfaces like spheres and planes are possible.
On the surface of the hemisphere the sound pressure
p from equation (18) is computed. The values of the
sound pressure spread over a wide range. For this rea-
son the sound-pressure values are written as a level:

Lp = 20 · log
(

p

p0

)
dB . (19)

p0 = 2 · 10−5 N
m2 is the auditory threshold at 1, 000 Hz.

Figure 11: Sound-Pressure Distribution for f = 520 Hz.

Fig. 11 depicts exemplarily the sound-pressure dis-
tribution for f = 520 Hz. There are some extinction
effects on the top side of the hemisphere. Here, the
maximum sound level reached is about Lp,max = 23 dB.

Table 2: Values for Lp,max for Selected Frequencies.

f [Hz] Lp,max [dB] f [Hz] Lp,max [dB]
100 -16 420 16
520 23 620 9
720 27 940 28

1040 11 1140 9

Table 2 collects the computed maximum sound-
pressure levels for some selected frequencies. Although
the highest force excitation is found for f = 100 Hz
(see Fig. 7) the resulting sound pressure on the hemi-
sphere is the lowest. Its value is even below the audi-
tory threshold. The highest levels are reached for the
first stator- and rotor-slot harmonics at f = 520 Hz
and f = 720 Hz as well as at f = 940 Hz. These



relations suit the structure-borne sound-measurements
mentioned in the previous section by the proportion of
the orders.

III. CONCLUSION

In this paper the simulation of the electromagnetically
excited structure- and air-borne noise of an induction
machine with squirrel-cage rotor is described. The
acoustic simulation is performed in three main steps
and requires three different FEM/BEM models of the
geometry of the machine. The structure-borne sound is
derived from an intermediate step. The theory of the
electromagnetic solvers is described as well as that of
the structural-dynamic and the acoustic.

The main aspects which have to be regarded dur-
ing the simulation are pointed out and some example
pictures and tables show qualitative results. Detailed
results will be presented in an additional paper con-
cerning different types of surface-force excitation in the
induction machine [13].

It is now possible to estimate the acoustic behavior
of electrical devices. The structure-borne sound allows
to simulate the deformation of the structure which is
transmitted to other parts of the structure, e.g. the
interior of a car.
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[6] Ramesohl, I. H., Küppers, S., Hadrys, W., Hen-
neberger, G., “Three Dimensional Calculation of Mag-
netic Forces and Displacements of a Claw-Pole Gener-
ator,” IEEE Transactions on Magnetics, 32(3):1685–
1688, May 1996

[7] Bronstein, I. N., Semendjajew, K. A., Taschenbuch der
Mathematik, 25. Auflage, B. G. Teubner Verlagsge-
sellschaft, Stuttgart, Leipzig, 1991

[8] Schlensok, C., Schneeloch, G., Henneberger, G., “Anal-
ysis of Stator-Teeth Forces in Induction Machines
with Squirrel Cages Using 2D-FEM,” 6th International
Symposium on Electric and Magnetic Fields, EMF,
Aachen, Germany, October 2003

[9] Nau, S. L., “Acoustic noise of induction electric motor:
Causes and solutions,” 2nd international Seminar on
Vibrations and Acoustic Noise of Electric Machinery ,
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