
1390 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 2, MARCH 2004

iMOOSE—An Open-Source Environment for
Finite-Element Calculations

D. van Riesen, C. Monzel, C. Kaehler, C. Schlensok, and G. Henneberger

Abstract—Implementing finite-element (FE) solvers for new
formulations is often a tedious task, as many common parts are
coded again and again. Also, commercial codes are often expensive
and therefore difficult to include in, e.g., a teaching environment.
iMOOSE is an open-source software package for FE calculations
that tries to solve these issues. It is a general-purpose class
library that allows for an easy implementation of new FE solvers
or FE-related tools. Also included are ready-to-use solvers for
electromagnetic calculations and a powerful post-processing tool.
Due to its open-source nature, the source code can be examined,
modified, and extended to fit the user’s needs.

Index Terms—Finite elements, object-oriented software, open-
source software.

I. INTRODUCTION

IMOOSE [1] is an open-source environment for finite-ele-
ment (FE) calculations. It has been developed over the past

years out of the necessity of redesigning and re-implementing
the same procedures and data structures over and over again
when a new solver or formulation was developed. Using
iMOOSE as an object-oriented class library, it is now possible
to reuse all the basic building blocks of an FEM program.

The class library includes element classes for different
two-dimensional and three-dimensional (2-D and 3-D) el-
ement shapes and types, problem-definition classes, and
equation-solving methods. For specialized tasks, interfacing to
external libraries is implemented.

Object-oriented software development methods have ac-
quired some popularity in the last years, and the finite element
method (FEM) is well suited for this kind of technique. Dif-
ferent approaches are described in [2]–[4]. In contrast to some
more academic decompositions of the FE procedure from the
mathematical point of view, iMOOSE takes a more practical
approach, also paying attention to the usability of the class
library for practical applications and to producing performant
solvers, capable of handling large problems [5].

Using the provided class library, a number of solvers for
electromagnetic, structural-dynamic, and thermal computations
have been implemented. Of general interest, and therefore in-
cluded in the open-source release, are the solvers for 2-D static
and transient and 3-D static and time-harmonic electromagnetic
calculations.

The open-source idea is considered by the authors to be a
very important contribution to the development and distribu-

Manuscript received July 1, 2003.
The authors are with the Department of Electrical Machines (IEM),

Institute of Technology Aachen (RWTH), D-52056 Aachen, Germany (e-mail:
riesen@iem.rwth-aachen.de).

Digital Object Identifier 10.1109/TMAG.2004.825471

Fig. 1. Overview of the iMOOSE class library.

tion of software. Most of the external libraries, e.g., for equation
solving or mesh partitioning used by iMOOSE, are open-source
products. iMOOSE has been also released under an open-source
license. This allows other users in the scientific community to
use the provided programs, review the design and implementa-
tion of the library, contribute new functionalities, or use it as a
base for their own programs.

This paper will give an overview of the class library and
present the released solvers. The example of parallel execu-
tion of a 3-D static electromagnetic solver will demonstrate how
some functionality is delegated to external libraries. Due to this
use of external libraries, there are some prerequisites for com-
piling and running iMOOSE, which are also discussed.

Since iMOOSE is an open project, contributions are possible
from sources foreign to the core developer team. This, and the
fact that there are different developers working on this project,
makes it necessary to implement some coding rules and revision
control, as explained in the last section of this paper.

II. CLASS LIBRARY DESIGN

The class library is divided in four main areas (Fig. 1). One is
a complex comprising nodes and elements. The other parts in-
clude a problem definition and solving area, where system ma-
trices are built and equation systems are solved. For the post-
processing of the solution, classes representing physical fields
and quantities are available. Helper classes, which, e.g., inter-
face with external mesh generation tools, complete the class li-
brary.

The basic class diagram in UML notation [6] of the element
classes is shown in Fig. 2.

Implemented element shapes include 2-D triangles and
quads, and 3-D tetrahedra, pyramids, prisms and brick el-

0018-9464/04$20.00 © 2004 IEEE

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 06,2020 at 18:22:18 UTC from IEEE Xplore. Restrictions apply.

VAN RIESEN et al.: iMOOSE—AN OPEN-SOURCE ENVIRONMENT FOR FINITE-ELEMENT CALCULATIONS 1391

Fig. 2. Basic class diagram of the element classes.

ements. For node-based approaches both first and second
order elements are available. Edge-based approaches use only
first-order tetrahedra at the moment. Through heavy reuse
of this code, the possibility to mix edge- and node-based
formulations is also achieved.

In the class diagram, two different class trees can be seen. The
basic element (class), which represents the only in-
terface to element functions for the rest of the class library, has
specializations depending on the geometrical shape of the ele-
ment. In these, functions not depending on the solver type are
implemented, like, e.g., the gauss points and weights for numer-
ical integration. Solver-dependent functions like the shape func-
tions, interpolation of the field quantities in the element, or the
building of element matrices and vectors is delegated to the class
tree starting with . Here, a distinction is made be-
tween node-based and edge-based elements and first- or second-
order elements. For calculations including mixed-type elements
with both edge-based vector quantities and node-based scalar
quantities, a third element state is defined. To avoid code dupli-
cation, this element state class holds pointers to corresponding
node- and edge-based classes and only re-implements new func-
tionalities like mixed-element matrices. Thus, the effort needed
for the introduction of these mixed elements is very low.

The elements and nodes are linked to the other parts via the
concept of a finite-element mesh. Multiple meshes may coexist
in the same program.

Another important part is the problem formulation and
solving task. The main components can be seen in the class
diagram in Fig. 3.

The core class is , which provides an interface
to the system matrix and the vector of unknowns and the
right-hand-side vector through the use of an equation system

. Translation between the id of an unknown
(node or edge and component) and the row in the matrix is
done by an interface class, with specializations for single
degree of freedom or multiple degrees of freedom cases. Extra
functionality for multiple degrees of freedom and extra blocks
in the system matrix (e.g., for coupling with external circuit
equations) is provided by and ,
respectively. The formulation of an FE problem is defined
in the method . This is the method to be
implemented for a new formulation when extending the class

Fig. 3. Class diagram showing the class defining and solving FE problems.

Fig. 4. Class diagram showing the inclusion of the MTL/ITL library in the
problem solving classes.

library. This method has typically 50 to 100 lines of code. When
defining a formulation with capability for handling nonlinear
materials, either a relaxation or a Newton–Raphson algorithm
can be added to the newly defined formulation. Again, only the
specific matrix building part (e.g., adding the jacobian matrix)
has to be coded.

Fig. 4 shows how the representation of matrix and vectors is
handled by an external library (MTL [7]). Wrapper classes adapt
the interface of to the one needed by the equation array. The
solving of the problem is handled by another external library
(ITL [8]), which is called from a class linked to the equation
array.

III. AVAILABLE SOLVERS

In the open-source release, the solvers included are those
which were most tested and of general interest. A 2-D solver
(iMOOSE.stat2d) for static electromagnetic calculation uses a
node-based magnetic vector potential. For 3-D electromagnetic
calculation, an edge-based approach with the magnetic vector
potential is taken. Additionally, this solver features a pre-pro-
cessing stage with an electric vector potential for arbitrarily
shaped source current regions. Examples of calculations using
this solver are depicted in Fig. 5.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 06,2020 at 18:22:18 UTC from IEEE Xplore. Restrictions apply.

1392 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 2, MARCH 2004

Fig. 5. Team 20 problem and a skewed 3-D induction machine calculated with
3-D static solver iMOOSE.stat3d.

Fig. 6. Flux density and vector potential distribution in an induction machine
calculated with iMOOSE.asm2d.

Fig. 7. Time-dependant torque behavior of an induction machine.

A 2-D solver for transient calculation is also included in the
open-source release. With this solver, it is possible to take into
account eccentric rotor position and external circuits. An ex-
ample of the use is shown in Figs. 6 and 7.

The most recent addition to iMOOSE is a 3-D solver for
time-harmonic calculations using edge elements [9]. It includes
three different formulations, all based on the magnetic vector
potential . A single approach, a combination with an elec-
tric vector potential (,) and a combination with an
electric scalar potential (,). The three formulations
have different applications depending on the nature of the re-
garded eddy-current regions, the frequencies, and conductivi-
ties involved. Fig. 8 shows the results of the TEAM Workshop
problem no. 7 [10] used for the verification of the solver.

Fig. 8. Flux density and current density distribution for TEAM Workshop
problem no. 7.

Fig. 9. Efficiency and speedup with parallel execution.

A. Parallel Execution

In order to accelerate computation, the solvers provided by
iMOOSE can easily be parallelised. By doing so, cheap clus-
ters of standard personal computers can be used to achieve high
speedups. To implement parallel execution, heavy use of open-
source libraries and components has been made. Mesh parti-
tioning is done by Metis [11], the equation system is solved by
the PetSC-library [12] and the program runs in a MPI environ-
ment (LAM [13]).

The above shown examples for 3-D, static calculation (Team
20 Problem—mesh with about 120 000 elements, and an induc-
tion machine (ASM3-D)—about 300 000 elements) have been
calculated on a cluster of up to six PCs, each with an AMD
Athlon 900-MHz processor and 1-GB memory. Fig. 9 shows the
achieved speedups and the per-processor efficiency. The theo-
retical efficiency of 100% is not achieved. For larger problems,
the efficiency per processor reaches values between 70% and
80%, e.g., increasing the speed of execution four times when
using a six-processor cluster.

IV. SOFTWARE ENGINEERING

A project the size of iMOOSE is obviously not written by a
single programmer. Thus, a team of programmers has to be coor-
dinated. And, as an open-source project, the input of other teams
or programmers from other institutions is not only possible but

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 06,2020 at 18:22:18 UTC from IEEE Xplore. Restrictions apply.

VAN RIESEN et al.: iMOOSE—AN OPEN-SOURCE ENVIRONMENT FOR FINITE-ELEMENT CALCULATIONS 1393

desired. Hence, some care has to be taken with the program-
ming. Coding standards (naming conventions, indentation) help
in reading and understanding the source. Documentation of the
source code is very important. iMOOSE uses in-line documen-
tation embedded in the source files, from which doxygen [14]
generates HTML documentation. A revision control system is
used to track changes to the source code, both on the local repos-
itory as well as with the open-source published source code,
hosted on Sourceforge [15]. Automatic compile and work tests
ensure that no errors go unnoticed.

A. Extensibility

One main concern in the design of iMOOSE is to be easily
extendible. In a research environment, often new functionali-
ties have to be implemented and tested. The object-oriented de-
sign with its defined interfaces, the low coupling between dif-
ferent parts of the class library, and the high cohesion inside
the classes makes this possible. The authors themselves have
used this extensibility, since iMOOSE has grown with the needs
of the developers, implementing different element shapes and
formulations, leading to the different solvers presented above.
But also external developers could benefit from this possibility,
by adding different formulations, e.g., for high-frequency prob-
lems or by contributing modern equation-solving algorithms,
e.g., multigrid solvers. Also, the interfaces to external meshing
or post-processing tools can easily be adapted.

B. Prerequisites

The idea of open-source software makes it possible to profit
from other’s experience and work, relieving the programmer of
the need to reinvent the wheel or implement functionalities not
within his core competences. Thus, iMOOSE uses other soft-
ware projects for some special tasks. The core and the solvers
require the presence of the Matrix Template Library [7] (MTL)
for the representation of matrices and vectors and the Iterative
Template Library [8] (ITL) for solving the equation systems.
The parallel execution of solvers using Metis [11] for graph par-
titioning and mesh distribution, PetSC [12] for parallel solving
of equation systems and LAM-MPI [13] for the communication
between the nodes. The largest number of external components
is required for iMOOSE.trinity, the visualization tool. It uses
Python [16] as a scripting language, Qt [17] for the graphical
representation and Mesa [18] for 3-D visualization.

Since iMOOSE is intended mainly for development and
research and not distributed as a product, only a source-code
package is available. Compilation by the user is required. The
language used is C++, which is a rather recent development,
that became a standard in 1998. Nevertheless, compilers had
difficulties in keeping up with the standard, and thus C++ is still
only portable with some effort. The development of iMOOSE

started in 1997, and has therefor also evolved with the language
and the compilers used. The main development takes place in
an GNU/Linux environment.

Another prerequisite for the use of the iMOOSE package is an
external mesh generator. The authors use Ansys [19], although
any program with a documented mesh exchange format could
be used. An open-source alternative is still missing.

V. CONCLUSION

An object-oriented class library and program package for fi-
nite-element computations has been presented. It is released as
an open-source project available to everyone.

REFERENCES

[1] G. Arians, T. Bauer, C. Kaehler, W. Mai, C. Monzel, D. van Riesen,
and C. Schlensok. Innovative Modern Object-Oriented Solving Envi-
ronment—iMOOSE. [Online]. Available: http://www.imoose.de.

[2] R. C. Mesquita, E. J. Silva, R. L. Braga, M. A. Matias, C. R. S. Nunes,
J. A. Vasconcelos, C Jr, A. M. de Oliveira, J. P. A. Bastos, M. C. Costa,
L. Lebenzstajn, A. B. Dietrich, J. R. Cardoso, and S. S. S. Melnikoff,
“An object-oriented application framework for the computation of elec-
tromagnetic fields,” in Proc. CEFC’02, Perugia, Italy, 2002, p. 256.

[3] S. Giurgea, T. Chevalier, J. L. Coulomb, and Y. Marechal, “Unified phys-
ical properties description in a multi-physics open platform,” in Proc.
CEFC’02, Perugia, Italy, 2002, p. 253.

[4] F. Henrotte, B. Meyes, A. Genon, and W. Legros, “An object-oriented
decomposition of the f.e. procedure,” IEEE Trans. Magn., vol. 32, pp.
3403–3406, May 1996.

[5] G. Arians, D. van Riesen, and G. Henneberger, “Innovative object ori-
ented environment for designing different finite element solvers with
various element types and shapes,” in Proc. 13th Compumag, 2001, pp.
218–219.

[6] C. Larman, Applying UML and Patterns. Englewood Cliffs, NJ: Pren-
tice-Hall, 1998.

[7] A. Lumsdaine, J. Siek, and L.-Q. Lee. The Matrix Template Li-
brary—Mtl. [Online]. Available: http://www.osl.iu.edu/research/mtl

[8] , The Iterative Template Library—Itl. [Online]. Available:
http://www.osl.iu.edu/research/itl

[9] D. van Riesen, C. Kaehler, and G. Henneberger, “Mixing nodal and edge
elements in an object-oriented fem calculation tool,” in Proc. EMF 2003,
Aachen, Germany, pp. 301–304.

[10] K. Fujiwara and T. Nakata, “Results for benchmark problem 7 (asym-
metrical conductor with a hole),” Compel, vol. 9, pp. 137–154, Apr.
1990.

[11] G. K. Karypis et al.. Metis—Family of Multilevel Partitioning
Algorithms. [Online]. Available: http://www-users.cs.umn.edu/
karypis/metis/

[12] Petsc—The Portable, Extensible Toolkit for Scientific Computation.
Various. [Online]. Available: http://www-fp.mcs.anl.gov/petsc/

[13] LAM/MPI Parallel Computing. Lam Team. [Online]. Available:
http://www.lam-mpi.org

[14] Doxygen. Dimitri. [Online]. Available: http://www.doxygen.org/
[15] Sourceforge.net, the World’s Largest Open Source Software Develop-

ment Website. Various. [Online]. Available: http://www.sourceforge.net/
[16] Python. Python Software Foundation. [Online]. Available:

http://www.python.org/
[17] The qt Library. Troll Tech Inc.. [Online]. Available: http://www.troll-

tech.com/products/qt/index.html
[18] B. Paul. The Mesa 3d Graphics Library. [Online]. Available:

http://www.mesa3d.org
[19] Ansys. Ansys Inc.. [Online]. Available: http://www.ansys.com

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 06,2020 at 18:22:18 UTC from IEEE Xplore. Restrictions apply.

