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Abstract: Several different formulations for the calculation of eddy-currents using the finite-
element method have been proposed. For 3D applications in static cases the magnetic vector
potential with edge elements is the most common case. The static formulation can be extended to
account for eddy-current effects using an additional term with the same magnetic vector potential
with an electric vector potential or with an electric scalar potential. The last is commonly believed
to be the best in terms of stability and convergence rate. This paper considers the three different
formulations in a time-harmonic and a transient case for a simple C-core model and the TEAM
Workshop problem 7. The effects of time and space discretisation are analysed. The TEAM
Workshop problem is also verified against measurement results obtained by Fujiwara et al.

1 Introduction

Eddy-current calculation in electromagnetic devices is
becoming more important as both the available computa-
tional power and the need for electric power loss reduction
increase. Several different formulations for the calculation
of eddy-currents using the finite-element method have been
proposed. For 3D applications in static cases the magnetic
vector potential 4 with edge elements is the most common
case. The static formulation can be extended to account for
eddy-current effects using an additional term with the same
magnetic vector potential (Z — A* formulation), with an
electric vector potential 7'(4 — 4, T formulation) or with an
electric scalar potential V(4 — A, V formulation). The last is
commonly believed to be the best in terms of stability and
convergence rate. This paper considers the three different
formulations in a time-harmonic and a transient case for a
simple C-core model and the TEAM Workshop problem 7
[1]. The effects of time and space discretisation are analysed.
The TEAM Workshop problem is also verified against
measurement results obtained by Fujiwara et al [1]. All the
solvers are part of the iMOOSE software package [2, 3].

2 Formulations

A very thorough overview over the above-mentioned
formulations for the eddy-current analysis is given by Bird
[4] for the time-harmonic problems. The most simple

formulation uses a modified magnetic vector potential A
with the flux density B =V x A* and the electric field
E = —jwA*. The resulting Galerkin form using edge basis
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functions to approximate 4* reads

/Vx&iviZ*dQ—&—/jwa&'i-Z*dQ

Q Q

. (1)

:/VX&’,-~T0dQ Vi=1,2,....n,
Q

where Q is the regarded field domain, &; are vector shape
functions, o, scalar shape functions and v is the
reluctivity. This formulation is suited only for short-
circuited eddy-current regions, and is said to have poor
numerical stability [4]. Therefore an electric scalar
potential ¥ is introduced. It is approximated using nodal
basis functions in the elements, requiring a program code
capable of mixing nodal and edge element types. The
Galerkin form of the system equation is given by

/Vx&[-viAdQ—&-/jwa&'i-ZdQ
0 Q

+/ja)06€1-~VV (2)
Q

=/V><&j’od9 Vi=1,2,...,n,
Q

A / jwaVo; - AdQ + / eV VVdQ =0
o 3)

A formulation using only edge basis functions considers an
electric vector potential 7' with the current density J =
VxT

/VX&,VVXXdQ—F/&,VXT:/&ljod.Q
Q Q Q
Vi=1,2,....n,
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/janx&i2+/Vx&iVdeQ:O
Q Q
Vi=1,2,....n,

This formulation, however, also has some stability issues.
Especially for higher frequencies and/or higher conductiv-
ities, the convergence is poor [5]. Additionally the
implementation in iMOOSE does not allow for multiply-
connected eddy-current regions.

For the transient calculation the formulations are
extended with the time-dependent values discretised accord-
ing to the Galerkin scheme, resulting e.g. for the magnetic
vector potential in

A() = (1 — ©)4, + 04, (6)

t—t, t—t,

tisl — b, ot
with @ =2/3 ¢f. Zienkiewicz et al [6].

All three formulations share a common formulation for
noneddy-current regions, which is equal to the static case
(with the added time dependency). Therefore it is not
displayed here. The A — A,V formulation in Galerkin form
reads in eddy-current regions

; 0<o<1 (7)

/TVXMvaZ"HdQJr/ IN, Aprd @

o o At

+/ iﬁi-vr/,,ﬂdsz:/ (t—1)V x N; - v x 4,d Q
oAt Q
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oAt oAt
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Q

(8)
A ZVN - dynde+ [ VN, -VY,ade
At i n+1 At i n+1
Q Q
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At At
Q Q

Vi=1,2,...,n,
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The A—A4,T formulation for eddy-current regions in
Galerkin form [7] is

/ [tV X NWV X Ayt — INV X Ty ]dQ
Q

:/[(r—l)vXN,--vvxz,,
Q

L . . (19)
— (= DN,V x T, + tNJouy1 + (1 — 1)Jou
+V X Nv(tBpi1 + (1 — 1)B,)|d
Vi=1,2,...n,
— 1 3 = 1—'
/\/ TVXN; - =V XL +VXN;-—A4,41 |dQ
Q g At
— 1 = = 1—»
:/ <(r—1)V><N,~—V><T,,+V>< ,-~—An>dQ
Q o At
Vi=1,2,...,n,
(11)

The 4, 4* formulation is not given here as it can be deduced
from (8) by suppressing the term with the electric scalar
potential.

3 Results

Two different models are used to test the convergence
behaviour of the different formulations. A simple C-core
with a conducting plate in the yoke and the TEAM
Workshop Problem 7, with results verified against the
measurements by Fujiwara et a/ [1]. The A4 — A4, T formula-
tion as implemented in iIMOOSE is not suited for the
multiply connected eddy-current region of the TEAM
problem and does not converge for realistic conductivity
values in the case of the claw pole alternator. A comparison
between the 4 —A4* and 4 —2,7’ formulations was
performed by the authors in [5].

3.1 TEAM Workshop problem 7
This problem is a linear quasisteady eddy-current problem
with multiconnectivity. It is suited to be simulated with both

the time-harmonic and the transient model with 4 — A* and

current density, A/m?2
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Fig. 1 Flux density and current density distribution for TEAM Workshop problem 7
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A-4 , V formulations. A sample flux density and current
density distribution is depicted in Fig. 1. Reference [1] gives
measured values for flux and current density along a sample
line in the model. These are compared with the results of the
simulation in Fig. 2. Both formulations yield the same
results and show a very good agreement with measure-
ments. The model is discretised with various mesh densities,
resulting in meshes with 25000, 50 000, 180000 and 410 000
first-order tetrahedral, respectively. The number of CG
steps required to solve the problem, with the frequency of
the exciting current ranging between 10 Hz and 10kHz, is
depicted in Fig. 3a for the A4 — 4* formulation and in

Fig. 3b for the A — A, V formulation. Both formulations are
compared for the model with 180000 elements in Fig. 3c.
The convergence behaviour evolves as expected. Larger
models require more CG steps. For the A — A* formulation,
a better convergence with ascending frequencies is noted.
The 4 — ;i, V' formulation requires slightly more CG steps
at higher frequencies, although the change is not as
pronounced as in the case of the A — 4" formulation.
Figure 4 shows the convergence for the transient model,
with three different time steps Az (2.5 x 10735, 2.5 x 10~%s
and 2.5x 1077, see (7). Due to the computation time
required, few frequency samples have been obtained. The
differences between the 4 — 4* and the 4 — Z, V formula-
tions are not very pronounced. For the measured case of
S0Hz excitation, Fig.5 compares the evolution of the
residuum of the CG iterations for both the time-harmonic

2.0

R
Ny

current density, 108A/m
o
o
1

<> — measured

—-1.0 e TSAAAV

B HARM,AAV \\'
-2.0 T T T T T 1

0.0 0.1 02 03

position x, m
a

100 ~

flux density, 10747

—60 T T T T T 1
0.0 0.1 0.2 0.3
position x, m

b

Fig. 2 Comparison between measured [1] and calculated data for
TEAM Workshop problem 7

a Current density

b Flux density
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and the transient case. In the time-harmonic model similar
oscillations can be noticed with a steeper descent for the
A — 4, v formulation, resulting in fewer iteration steps. On
the contrary, in the transient model the behaviour is similar
for both formulations. This, in addition to the higher
number of unknowns resulting from the additional scalar
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Fig. 3 Convergence behaviour of TEAM Workshop problem 7,
time-harmonic model

a A — 4* formulation
bA— Z, V formulation
¢ Comparison Ad-4 —4d- Z, V formulation.
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Fig. 4 Convergence behaviour of TEAM Workshop problem 7,
transient model
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Fig.5 Convergence for harmonic and transient calculation of
TEAM Workshop problem 7

a Harmonic

b Transient

potential, results in a higher computation time. Tables 1 and
2 give details about the dimension of the system matrix and
the time required for computation.

3.2 Simple C-core
A simple model of a C-core with a conducting region in the
yoke and one excitation coil is used for further testing. It is

IEE Proc.-Sci. Meas. Technol., Vol. 151, No. 6, November 2004

Table 1: Time, number of CG steps and matrix dimension
for time-harmonic problem, TEAM 7

Formulation Time (s) Steps Dim.
A 1258 645 213,200
A-AV 800 298 219,864

Table 2: Time, number of CG steps and matrix dimension
for transient case, TEAM 7

Formulation Time (s) Steps Dim.
A 44,882 135 213,200
A—AV 48,387 140 219,864

calculated with the time-harmonic and transient model for
all three formulations. Figure 6a shows the model and
Fig. 6b the eddy-current distribution in the conducting
region for an excitation frequency of 100 Hz. The problem
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Fig. 6 Model and eddy-current density solution of simple C-core
a Model
b Current density
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is calculated at different frequencies in the range of 10 to
5000 Hz. Figure 7 shows the number of CG steps needed to
reach convergence. Figure 7a shows the results for the time-
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Fig. 7 Convergence behaviour of C-core

a Time-harmonic model

b Transient model

¢ Transient model without 4 — 4 , T formulation
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harmonic model. As previously, the convergence for the
A4 — 4" formulation gets better at higher frequencies. But
for the 4 — A4 , T formulation it gets worse, even such that it
does not convergence for 1000 Hz and higher. The A—A,V
formulation shows a convergence behaviour that is not
significantly affected by the frequency. Figures 76 and 7c¢
show the transient model. The calculation is performed for
three different frequencies with three different time-steps A¢

as previously. The A-4 , T formulation only converges for
the larger time-step. The convergence is not affected by the
frequency in such a strong way as in the time-harmonic
model. The smaller time-steps give better convergence. As
opposed to the time-harmonic model, with the smallest

time-step there is almost no difference between the A4— A4

and the 4 — A4,V formulation, again resulting in larger
computation times for the last. Figure 8 shows a
convergence plot for the calculation of the C-core model,
both with the time-harmonic (Fig. 8a) and the transient

(Fig. 8b) model. It can easily be seen that the 4 —Z, 1%
formulation has larger oscillations in the relative residuum
in the CG process, especially for the transient, model.
Variations of the preconditioning algorithm have not been
performed. Reference [8] showed the effect of precondition-
ing on the CG convergence characteristics. For the

relative residuum
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A " " " " " L
200 400 600 800 1000 1200 1400
CG step

b

Fig. 8 Convergence for harmonic and transient calculation of C-
core model

a C-core, time-harmonic

b C-core, transient

IEE Proc.-Sci. Meas. Technol., Vol. 151, No. 6, November 2004

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 08:12:16 UTC from IEEE Xplore. Restrictions apply.



algorithms available in iIMOOSE, ILU(0) gives better
performance than SSOR.

4 Discussion

The A — A, V formulation proves to be, as expected, best in
terms of convergence stability over a wide range of

frequencies and time-steps. For higher frequencies the 4-

A* formulation has advantages. It will compute the solution
faster particularly due to the smaller number of unknowns.
Nevertheless, the application is restricted to short-circuited
eddy-current regions. Thus the A — A4,V formulation is
more versatile. The differences are less pronounced in the
transient model. The A4 — A4 ., T formulation has poor
numerical stability, especially in the transient model, where
the system cannot be made symmetric and a BICG has to
be used. Convergence is often not reached.

The 4 —A,T formulation does have its advantages
where an overall current is imposed in the eddy-current
region.

5 Conclusions

Three formulations all based on the use of the magnetic
vector potential and combined with either an electric scalar
or vector potential have been presented, for both a time-
harmonic and a transient model. The convergence beha-
viour is analysed for two different applications. The

assumption of the A —Z, V' formulation being the best in
terms of stability and convergence and the most versatile is

IEE Proc.-Sci. Meas. Technol., Vol. 151, No. 6, November 2004

confirmed. For special problems the A—A-or A—A,T
formulation gives better or faster results.
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