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ABSTRACT

In this paper the radial force of a bearingless wound-
rotor induction motor was first theoretically analyzed.
Because of the asymmetrical flux distribution and
rotating fields in the bearingless wound —rotor induction
motor transient finite element method was used to
compute the radial force. The influences of the bearing
current and the eccentricity of the rotor on the radial
force were studied.

INTRODUCTION

The principle of bearingless machines bases on the
superposition of two fields with different numbers of
pole pairs, which results in a radial force. With different
rotor structures the bearingless conception can be
implemented with reluctance machines [1], induction
machines [2], permanent magnet machines [3], etc.
Because of the different rotor structure the form of the
rotor field and its influences on the radial force in each
type of bearingless machine are also different. In this
paper the specialties of the fields in bearingless
induction motors will be discussed.

A bearingless induction motor with squirrel cage
rotor was developed [4]. The test results indicate that
there is a closely coupling between the driving part and
the levitation part. The reason is that the rotor field of a
squirrel cage motor consists of two components, one is
induced from the driving field and the other is induced
from the bearing field. The second component can act
with the bearing field together to generate an additional
torque which influences the driving performance. This
argumentation was confirmed by the computation
results with transient finite element method (FEM) in
{5]. The driving control and the levitation control for

such a bearingless induction motor are therefore
coupled with each other, which results in complicate
control system.

To solve this problem a bearingless wound-rotor
induction motor was developed, whose rotor winding is
wound with the same number of pole pairs as that of the
driving winding. With this rotor structure the bearing
current has no influence on the driving performance and
the driving control can be decoupled from the levitation
control [6].

In order to build the levitation control system for the
bearingless wound-rotor induction motor, it is important
to study the radial force, how the radial force is
generated in the motor and which variables influence
the value and the direction of the radial force. In this
paper the radial force of the bearingless wound-rotor
induction motor will be first theoretically analyzed and
then computed with transient finite element method.
The influences of the bearing current and the
eccentricity of the rotor on the radial force will be
discussed.

THEORETICAL ANALYSIS

One of the specialties of bearingless induction motors
is that the rotor field is induced from the air gap field. In
order to avoid the induced rotor field having the
component which has the same number of pole pairs as
that of the bearing field, a bearingless wound-rotor
induction motor was developed.

Bearingless Wound-rotor Induction Motor

In the stator of the bearingless wound-rotor induction
motor there are two windings, one is the 4-pole driving
winding, the other is the 2-pole bearing winding. The



difference between this motor and the squirrel cage
motor is that in this motor the rotor winding is wound in
the rotor slots with the same number of pole pairs as
that of the driving winding. So the induced rotor field is
forced to have only one component which has the same
number of pole pairs as that of the driving field. The
rotor field can not act with the bearing field to generate
an additional component of torque, because the two
fields have different numbers of pole pairs. Therefore,
the bearing field does not influence the driving
performance.

4-pole
driving winding

2-pole
bearing winding

4-pole
rotor winding

FIGURE 1: Bearingless wound-rotor induction motor

The form of the wound-rotor winding seems like the
winding in a slip ring motor, but the rotor has no slip
ring and this winding is short circuited and has no
connection to the outside. The rotor structure is simple,
robust and has no mechanical contact. Fig. 1 shows the
structure of the bearingless wound-rotor induction
motor.

Radial Force

The generation of the radial force in bearingless
machines is based on the superposition of fields with
different numbers of pole pairs, which results in an
asymmetrical flux distribution in the air gap. Another
specialty of the bearingless induction motor is that all
fields in the machine are rotating fields which are
generated from the 3-phase currents in the driving
winding, in the rotor winding and in the bearing
winding. The 3-phase driving current, rotor current and
bearing current can be described as following:
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These currents generate three rotating fields, whose
flux densities can be described as:
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Because both the driving winding and the rotor
winding have 4 poles, the generated driving field and
rotor field are both 4-pole rotating fields. The
superposition of these two 4-pole fields is still a 4-pole
rotating field. The bearing winding has 2 poles and the
generated bearing field is a 2-pole rotating field. So in
the motor it can be assumed that there exist a 4-pole
field and a 2-pole field.

The air gap flux is the superposition of all these
three rotating fields:

B,(a,t) = B/(a,0) + B, (a,t) + B,(a,) (3

and the magnetic energy in the air gap:
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If we use the approximation:
1(1-x) = 1+x 8
for 1/8(cr), then we can get the radial force as following,
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From the equivalent circuit diagram of the induction
machine [7], it is known that

L=1+1, (12)

then equation (11) can be rewritten as:

F= ,/ F}+F} =k, (13)

I, is the magnetizing current as in the normal induction
motor, here in the bearingless wound-rotor induction
motor it is proportional to the total 4-pole flux.

From equation {13) it is known that the value of the
radial force is dependent on the value of the bearing
current and the total 4-pole flux. With the field oriented
control for the driving part of the motor the 4-pole flux
and the torque will be controlled independently to each
other. The 4-pole field is constant in the fundamental
speed range even though the load is changed. Hence, the
value of the radial force is only proportional to the
bearing current.

With the two-axis theory the bearing current can be
described in rotating two-axis system as:
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In the field oriented control I, can also be described
in rotating two-axis system as L,. Then from equations
(9) and (13) the radial force can be rewritten as:
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The equation (15) indicates that the direction of the
radial force y can be controlled by the phase angle
between the bearing current and the driving current B, if
the 4-pole field current keeps constant. Therefore, the
radial force in x and y direction, namely F, and F, can
be controlled by i, and i, respectively.

If we use the more approximate equation to
calculate the radial force from the magnetic energy:

1/(1-x)=1+x+x2 (17

then we get another description of the radial force:
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In comparison to equation (9) there are two
additional components in equation (18). The first
component in equation (18) is the same as equation (9).
Both second and third components are dependent on the
eccentricity of the rotor dx and dy. ‘

In the third component of equation (18) the
influence of dx and dy on F; and F; are coupled and
their factors are sinusoidal function with twice the
frequency of the current frequency. This means that the
radial force generated from the superposition of the
rotating fields consists of an alternative component
which alternates twice within a period of the rotating
field. For the geometrical parameters of the bearingless
wound-rotor induction motor there exist k;>k;>>k;, and
L,.I,’>L, the amplitude 1/2k;I,2 of the alternative
companent is much smaller than the other components.
Thus, the third component in equation (18) can be
neglected.

Further it can be assumed that the radial force
consists of two main components as following: '
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Equation (21) indicates that the radial force of the
bearingless wound-rotor induction motor can be
described as a function of the bearing current and the
eccentricity of the rotor. This equation is similar to the
general equation of radial force of the magnetic bearing
[8]. But here the influence of the eccentricity to the
radial force which is described as factor ky is not
constant. As described in equation (22), ky is a function
of the currents regarding to the 4-pole field and the 2-
pole field. As discussed before, the k312 is much smaller



than the other component, then k; is mainly dependent
on the currents of the 4-pole field. Additionally, k,
changes with the load since it is also a function of the
rotor phase angle.

NUMERICAL COMPUTATION

Since the generation of the radial force in bearingless
motors results from the superposition of two fields with
different numbers of pole pairs, the air gap field in the
bearingless motors is asymmetrically distributed. If the
rotor has eccentricity, the air gap is not constant and the
multi-inductance of the motor is not constant neither.
All these points can not be exactly taken into account
with the calculation done with analytical methods. So it
is necessary to use finite element method to study the
radial force of the bearingless wound-rotor induction
motor.

Finite Element Method

With the static finite element method only constant
fields in the motor can be computed, which can not
exactly simulate the generation of radial force in the
bearingless induction motor, because all the fields in the
induction motor are rotating field sand the rotor rotates
at a different speed from the rotating field. The transient
finite element method makes it possible to compute the
motor with rotating fields and rotating rotor. So it is
possible to simulate the transient responses of the
motor. And the computed radial force of the motor is
more closely to the practice. In addition, the
computation results with transient finite element method
can illustrate the rotation of the flux distribution.

The principle of the radial force computation with
transient finite element method was introduced in [5],
where also the transient responses of the radial force
and the torque were compared between the bearingless
squirrel cage induction motor and the bearingless
wound-rotor induction motor. In this paper some further
results from the computation with transient finite
element method for the bearingless wound-rotor motor
are discussed.

Radial Force Without Retor Eccentricity

First the motor is assumed to be at the center position
and the influence of the rotor eccentricity will not be
taken into consideration. Then the radial force was
computed at different bearing currents, while the driving
current keeps constant. In [5] it was already verified that
the change of the bearing current has no influence on
the driving part. So the total 4-pole field keeps constant.
In Figure 2 it is shown that the radial force is

proportional to the bearing current. This result is
coincided with equation (13).
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FIGURE 2: Radial force with bearing current

Further more the radial force and the torque were
computed at different rotor speeds, while the bearing
current keeps constant.

Figure 3 shows the results of the numerical
computations. The torque increases with the increase of
the slip, this relationship is the same as the theoretical
torque speed characteristics of induction machines. It is
also shown that the radial force keeps constant -at
different rotor speeds. In the computation the driving
voltage is constant at different speeds, the driving
current and the rotor current vary with the change of the
speed, but the total 4-pole field keeps constant. On the
other hand, the constant bearing current results in the
constant 2 pole field. The result indicates that the value
of the radial force is independent of the load. This is
also coincided with equation (13).
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FIGURE 3: Radial force and torque with slip

To study the direction of the radial force further
computations were carried out. From equation (15) it
can be seen that the direction of the radial force y is
dependent on the phase angle between the bearing
current and the driving curfent . So it should be
possible to change {3 to control the direction of the radial
force.



FIGURE 4: Radial force direction with phase angle
between the driving current and the bearing current

(a) p=0°

(c) P =180°

Figure 4 shows the direction of the radial force at
different phase angles between the bearing current and
the driving curtent P. For the first calculation with
voltages added to the driving winding and the bearing
winding, the resulted phase angle between the bearing
current and the driving current § = 30°, the radial force
has an angle of 30°, If it is forced that P = 0°, then the
radial force is changed also in direction 0°. If the phase
angle B decreases further with 90°, the direction of the
radial force changes also to correspondingly 90°,

The four diagrams in Figure 5 show the flux
distributions at the four different phase angles f = 0°,
90°, 180° and —90°, which results in the four typical
directions of the radial force as show in Figure 4. So the
direction of the radial force can be changed with the
phase angle .

(d) B = -90°

FIGURE 35: Rotating field and phase angle



Radial Force With Rotor Eccentricity

With the transient finite elements methods the radial
force of the bearingless wound-rotor induction motor
was also computed at different rotor eccentricities.
Figure 6 shows the radial force with rotor eccentricity
dy = -0.lmm. At t = 0, only the driving winding is
supplied with voltage, the radial force is mainly in
negative y direction due to the eccentricity. But there is
also a small radial force in x direction, because the
multi-inductance of the motor is not constant, if the air
gap is not constant. With the finite element method the
change of the multi-inductance and the saturation of the
motor can be taken into account.
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FIGURE 6: Radial force with dy=0.1mm

At t = b, the bearing winding is also connected with
voltage, then the radial force consists not only of the
component due to the eccentricity, but also of the
component generated from the bearing current. It can
also be seen that the radial force consists of a constant
component and an alternative component which has
twice the frequency of the currents. This is coincided
with equation (18). It is obvious that the amplitude of
the alternative component is much smaller than the
constant component.
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Figure 7: Radial force components at dy=-0.1mm with 3

Further computations with different phase angle p at
different eccentricities were carried out. And the results
in Figure 7 show that radial force due to the eccentricity
Fyy is almost constant during the variation of the phase
angle B. So it can be seen that the k; is mainly
dependent on the 4-pole field. Therefore, the simplified
equation (21) is reasonable and can be used for the
levitation control of the bearingless wound-rotor
induction motor.

CONCLUSION

The radial force of the bearingless wound-rotor
induction motor was theoretically analyzed and studied
with the transient finite element method. The radial
force with no rotor eccentricity is proportional to the
bearing currents and the direction of the radial force can
be controlled by the phase angle between the bearing
currents and the driving currents. The influence of the
rotor eccentricity on the radial force is also studied.
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