Design and Optimization of a Planar Gradient Coil System
for a Mobile Magnetic Resonance Device

Hartmut Popella and Gerhard Henneberger
RWTH Aachen, Department of Electrical Machines,Schinkelstrasse 4, D-52056 Aachen, Germany

Abstract

This paper presents the computation and optimization of a
surface gradient coil system for usage in a mobile MR tomo-
graphy. Here the principle planar gradient coil design required
by a MR Mobile Universal Surface Explorer (called MOUSE)
is demonstrated. The analytical calculation of the z-components
of the x-/z-gradient field is introduced. A numerical optimiza-
tion process based on stochastic genetic algorithms is applied
to the field problem in order to fulfill and optimize the system’s
requirements concerning gradient field strength and linearity.
The computed solutions are compared to measurements of an
experimental prototype.

Introduction

The design of the unilateral Mobile Universal Surface Ex-
plorer (MOUSE) requires a planar arrangement of a suitable
surface gradient coil system. The measuring device of this MR
system resides below the NMR specimen, the specimen is
placed onto the MOUSE [1]. The C-core design of the main
NdFeB magnet which produces the B,-field distribution causes
a naturally occuring static y-gradient along the penetration
depth of the B,-field. Therefore planar coil arrangements must
be found only for the generation of the G, and G, gradients.

Theory of planar gradient coil systems

The principle design of a planar z-gradient coil system is a
twofold array of symmetric current loops which face each
other. Several long wire pairs with different coil winding
numbers form current loops and produce a z-directed field.
Each current wire i is located at an optimal position by/d; on the
surface. The z-gradient can be calculated analytically by
application of Ampere’s law which yields to the following
equation:
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The x-gradient system is arranged in a planar and symmetric
fourfold array of current loops. The field distribution of the x-
gradient is more complicated and requires the solution of Biot-
Savart’s law in order to receive the B,(x,y,z)-component of a
closed rectangular loop:
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These are the z-components of the gradient field in the 1** and
4™ coil quadrant. Substitution of z; by —z; delivers B,-compo-
nents in 2™ and 3™ coil quadrant. The introduced formulas for
x- and z-gradients are valid only for one current loop. The line-
arity of both equations submits the calculation of the total flux
density in the following way:
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The gradient field strengths can be obtained from the
equations:
G (7)= 9B(r) | G (y,z2)= 9B (y,2)
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Optimization strategy

A suitable object-oriented numerical optimization process has
been developed in order to handle the amount of accumulating
optimization data [2],[3]. A genetic strategy based on the Eli-
test model is used to find the number of coil windings n;, their
location z; as well as their length [Xo-x;| and the impressed
current I within the predefined Field of View (FOV) by mini-
mization of the object function:
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Optimization results
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Figure 1. Comparison of flux density distribution of the analytically
optimized solution and measurements of the built prototype for a
penetration depth of y=Icm.

Fig. 1 shows the flux density distribution of the G,-coil sys-
tem after 2000 iteration steps. The desired field gradient has
been predetermined as G,=0.1mT/cm. After 2000 parameter
variations the resulting flux density nearly fits the desired one.
Finally the optimizer calculated N=2 coil pairs, their locations
as well as the number of coil windings n; for a current of about
I=20A. Reference measurements of a built prototype verify the
optimization results.

Conclusions

In this paper a planar gradient coil system and the system’s
basic descriptive analytical formulas have been introduced. The
knowledge of the analytical gradient field distribution motiva-
tes the efficient application of a stochastic optimization tool.
The correspondence of theory and measurements confirms this
approach for the design of a planar gradient coil system.
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