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Abstract This paper presents a general nonlinear mag-
netic equivalent circuit model of a switched reluctance
machine (SRM) that includes all possible flux paths in 2-D
view of the machine, taking into account mutual coupling
between phases and multiphase excitation. The model can
be used to predict the performance of the machine with
short or full pitched winding in static and dynamic re-
gimes. Therefore, it is a simple analysing tool for finding
the best configuration of SRM in computer-aided design
and optimal design. A novel technique is employed to
model the lumped elements of stator and rotor poles, and a
new representation of the rotor core is introduced. Also, a
general numerical matrix procedure is developed to cal-
culate the total machine torque, and an approximate an-
alytic alternative is presented. Inclusion of the rotor skew
in the new model is described, and the accuracy of the
model is verified by comparison of the simulation results
with those obtained by the finite element method and
measurements.

Keywords Switched reluctance machine, Magnetic
equivalent circuit model, Multiphase excitation, Mutual
coupling, Skewed rotor

List of symbols
Ap cross-section area of a stator or rotor pole
a cross-section area of a flux tube
aj cross-section area of a saturable flux tube de-

fined in Eq. (1)

B magnetic flux density
dsl parameter defined in Fig. 7a
g airgap length
hs stator pole height
hr rotor pole height
H magnetic field strength
I phase current
ii current of the ith phase
J current density
Ks, Ku parameters defined in Eqs. (10) and (15),

respectively
lstk rotor stack length
lc, lk parameters defined in Fig. 11
lm, rm parameters defined in Eqs. (19) and (20)
Ns number of stator poles
Nr number of rotor poles
N number of winding turns per stator pole for

each phase
Nph number of phases
P magnetic permeance
R phase resistance
R sub-matrix of the reluctance matrix
rsh shaft radius
rrb radius to the outer surface of the rotor yoke
rrp radius to the rotor pole tip
rsp radius to the stator pole tip
rsb radius to the inner surface of the stator yoke
r radius parameter
T total machine torque
V DC input voltage of each phase
Wc co-energy
Wf magnetic stored energy
a angle under each rotor pole defined in Fig. 4
bs stator pole arc
br rotor pole arc
u magnetic flux within a flux tube or as a mesh

flux related to the mesh analysis of the magnetic
equivalent circuit

kh, xh, sh parameters defined in Fig. 12
kmax parameter defined in Eq. (32)
sr parameter defined in Eq. (37)
m parameter defined in Fig. 7c
l magnetic permeability of saturable (iron) parts
l0 magnetic permeability of free space
h relative angle between a rotor pole and a nearby

stator pole
ha angle defined in Figs. 10 and 11
hslot stator slot angle shown in Fig. 7
hspace angle shown in Fig. 11
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xm rotor angular speed
n1, n2 boundary angles between the three regions

defined in Fig. 8
W magnetic flux linkage of a phase winding
w magnetic flux within a stator pole
kw magnetic flux within the kth slice of a stator

pole
F mmf source matrix of the circuit mesh analysis

in Eq. (52)
Ie unit diagonal matrix (all of diagonal elements

equal to unity)
Z impedance or reluctance matrix of the circuit

mesh analysis in Eq. (52)
Rij sub-matrix of the reluctance matrix
F, F¢, F¢¢ mesh flux vectors
Df width of the strips for the discrete integration in

Eq. (66)
Dh rotor angle increment

1
Introduction
While the switched reluctance machine (SRM) is very
simple and cost effective in principle, it is rather difficult to
design and develop performance predictions. Because of the
highly saturated doubly salient pole structure of the SRM,
most reliable results can be attained using advanced nu-
merical methods such as the finite element method (FEM)
[1–3]. Even with FEM, special techniques are required in
order to obtain relatively accurate results [4]. However, the
modeling and computational time of these methods is
prohibitively large for dynamic analysis as well as for
optimal design of SRM, where a large number of candidate
designs must be evaluated in short design time frames.

As an alternative, some models of SRM have been de-
veloped based on known curves, which use empirical
knowledge and need only a few precalculated points on the
magnetization curves [5–7]. While these fast models are
capable of taking into account all main nonlinearities due
to saturation, they are unable to include the effects of
mutual interactions between two or more simultaneously
excited phases.

The magnetic equivalent circuit method, as another
approach, has been used previously to model the saturated
magnetic field of SRM [8–10]. Some important points
based upon previous work and experience gained from the
FEM results must be considered in order to develop an
accurate and appropriate magnetic equivalent circuit
model for the SRM.

First, normally saturated operation of the SRM causes
high levels of saturation at corners of partially overlapping
stator and rotor poles and results in sharp curving of the
flux paths at the pole tips, as shown in Fig. 1. Thus, a
specially refined model should be used for stator and rotor
pole tips, and the nearby airgap [8].

Secondly, the required smooth torque for high-perfor-
mance SRM drives makes the machine operate with
overlap between exciting zones of successive phases, and
consequently leads to the simultaneous excitation of two
or more phases. The multiphase excitation of SRM may
cause saturation of the stator and rotor yokes, which

restricts the efficient use of iron, and it is usually avoided
by designers [9]. This saturation cannot be predicted by
the commonly used one-phase model of SRM. Addition-
ally, extensive finite element analysis of SRM, especially
with two phases conducted simultaneously, has revealed
the presence of mutual coupling between the stator phases
for a large group of candidate designs studied in an op-
timal design process. So, the modeling of all possible flux
paths linking different phases is necessary.

The previous attempts in this field do not meet all the
requirements mentioned above. In addition, all those
which include the effects of mutual coupling and multi-
phase excitation have no clear reference to the calculation
of the machine torque.

This paper describes a general nonlinear magnetic
equivalent circuit model of a SRM including all possible
flux paths in a 2-D view of the SRM. The model comprises
a set of permeance elements linked in series and in parallel
and can be applied to the machine with short and full
pitched windings. These permeances are mathematically
calculated for different parts of the machine based upon
the geometries of the flux tubes and, for stator and rotor
poles, upon the ratio of the fluxes which are to flow
through one common path. A numerical matrix method
and an approximate analytic alternative are presented to
calculate the total machine torque. Inclusion of the rotor
skew in the model is described, and the simulation results
are compared with FEM results and measurements.

2
Stator and rotor pole models
To produce useful mechanical torque in SRM, the airgap
region conducts the flux lines from the stator poles of the
excited phases into the rotor poles and core. As will be
described later, this region can be divided into some
separate paths so that each one, as a flux tube, conducts a
part of the airgap flux. Some of the airgap flux tubes
conduct the flux of each stator or rotor pole, which is equal
to an algebraic sum of the fluxes flowing through such
airgap flux tubes. Moreover, one or more saturable flux
tubes can be assumed within the pole to be connected to
each of these airgap flux tubes. Assuming one saturable
flux tube in the pole connected to each airgap flux tube, its

Fig. 1. High levels of saturation and sharp curving of fluxes at
corners of partially overlapping stator and rotor poles
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cross-section area can be determined by the concept of the
ratio of fluxes as Eq. (1).

aj ¼
ujPn

k¼1

uk

Ap ð1Þ

where Ap, n, uj and aj (j ¼ 1; . . . ; n) are the cross-section
area of the stator or rotor pole, the total number of airgap
flux tubes which conduct the flux into the pole, the flux value
and the cross-section area of the saturable flux tube con-
nected to the jth airgap flux tube, respectively. Therefore,
each airgap flux tube which conducts a part of the flux into a
stator or rotor pole is connected in the pole to a saturable
flux tube whose cross-section area is given by Eq. (1).

But the stator and rotor pole models should be handled
more carefully. When a pair of rotor and stator poles ex-
hibit partial overlap, the flux in the overlap region should
pass through a small cross-section area within the airgap.
While this flux may be insufficient to saturate the whole
pole, its density will increase in the airgap near the overlap
region. Consequently, it causes high flux densities at the
tip of the poles in the overlap region and leads to local
saturation phenomena. To deal with local saturation, each
airgap flux tube conducting the flux into the pole tip is
connected in series to a saturable flux tube whose cross-
section area is the same as that of the airgap flux tube. But
the length of this saturable flux tube is much smaller than
that of the former saturable flux tube defined above.

The stator pole model is divided into two parts, each of
them with half of the stator pole length. The first part
located near the root of the stator pole is assumed to
conduct a homogeneous flux and then modeled with one
permeance element. The second part includes a set
of permeance elements which are linked in series with
airgap permeance elements. Each airgap flux tube
conducting the flux into the pole tip is connected in series
to two saturable flux tubes in the pole, one with the same
cross-section area as the airgap flux tube, but with a short
length, and another with the cross-section area given by
Eq. (1). Nevertheless, each airgap flux tube conducting the
flux into the pole side is connected in the pole only to one
saturable flux tube, because the occurrence of local satu-
ration at the pole side is usually improbable. Each of these
saturable flux tubes is modeled with one permeance ele-
ment. The rotor pole model is the same as the second part
of the stator pole model. A simple illustration of the model
for partially overlapping stator and rotor poles is shown in
Fig. 2. As described above, the pole tips are modeled by
two series saturable permeance elements, and the pole
sides are modeled by one saturable permeance element.

Considering a homogeneous flux distribution within
each saturable flux tube, the permeance of the flux tube is
calculated by Eq. (2).

P ¼ lðBÞa
l

ð2Þ

where a, l, l(B) and B are the cross-section area, length,
permeability and magnetic flux density of the saturable
flux tube, respectively. The permeability of the saturable
flux tube is a nonlinear function of its magnetic flux
density. There are several ways to model this nonlinear

quantity. A most straightforward method which gives
accurate results is defined in Eq. (3).

l Bð Þ ¼ 1

p1 þ p2 Bj jq ð3Þ

where p1, p2 and q>0 are constant parameters [9]. These
parameters are adjusted in a curve-fitting process to give
the best approximation for the nonlinear permeability
curve of a selected industrial iron material. However, in
this work, the proposed model uses a look-up table of the
l)B curve with a spline interpolation algorithm for cal-
culating the permeability of each saturable flux tube similar
to the usual procedure used in commercial FEM software.
When the magnetic flux flowing through a flux tube is
known, the flux density will be the ratio of the magnetic
flux to the average cross-section area of the flux tube, and
the permeability is then evaluated by using the look-up
table of the l)B curve. As will be described later, because
of this nonlinear dependency, the final equations for the
circuit model will be nonlinear. So, the magnetic flux
flowing through each saturable flux tube is obtained at each
step during an iterative solution of the nonlinear model
equations based on the results from the preceding step.

3
Stator and rotor core models
The stator core or yoke has no complexity for modeling,
because the flux is distributed nearly homogeneously.
Hence, each part of the stator core between two successive
stator poles is represented by one permeance element.
Later, this permeance element is divided into two identical
permeance elements, providing the connection nodes re-
lated to the proposed model. In contrast, the rotor core or
yoke needs a more subtle model, because it rotates and the
flux distribution form changes. In order to find a suitable
model, a real flux distribution in a machine with one ex-
cited phase is considered at aligned, partially overlapping
and unaligned positions of the rotor poles with respect to
the excited stator poles, as shown in Fig. 3. Their similar
corresponding patterns are conceived as shown in Fig. 4.
The angle a is determined by the portion of the flux en-
tering the rotor core under an excited stator pole. The
situation is more complicated for multiphase excitation.

Fig. 2. Lumped model for a pair of stator and rotor poles in a
partially overlapping position
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For simplicity, the angle a under each rotor pole is limited
to four values. If there is no airgap path conducting the
flux between the rotor pole and the excited stator poles,
the angle is taken to be zero. Otherwise, if there are some
airgap paths between the rotor pole and the excited stator
poles, and there is no airgap path between the rotor yokes
at two sides of the rotor pole and excited stator poles, the
angle will be br. If there are such airgap paths for both of
these rotor yokes, the angle will be 2p/Nr. Finally, if there
is such an airgap path only for one of the rotor yokes, the
angle will be 0.5br + p/Nr.

Determining the angle a, the pattern of the flux distrib-
uted in the segment specified by this angle can show one of
the three forms illustrated in Fig. 5. This pattern is depen-
dent upon the direction of the total flux conducted by the
rotor pole into this segment and also upon the relative di-
rection of the fluxes in two adjacent rotor poles. A logical set
of conditional if-then statements determines the resulting
pattern of the flux under each rotor pole. The circuit model
of the rotor core is shown in Fig. 6 under two adjacent rotor
poles. The permeances under each rotor pole, Pur1 and Pur2,
are determined by the angle a and the direction of the total
fluxes in three nearby rotor poles. One or both of these

Fig. 5. Flux patterns in the segment specified by angle a under
each rotor pole

Fig. 6. Rotor core model under two adjacent rotor poles

Fig. 3a–c. Flux distributions in stator and rotor poles obtained
from FE analysis of SRM for one-phase excitation: a aligned
position; b partially overlapping position; c unaligned position

Fig. 4a–c. Flux patterns of the rotor core corresponding to Fig. 3:
a aligned position; b partially overlapping position; c unaligned
position of stator and rotor poles for one-phase excitation
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permeances may disappear. These permeances for pattern
(b) in Fig. 5 are determined as following:

Puri ¼
lðBuriÞlstkð0:5ðrrb � rshÞ þ xÞ

p
2 � 1
� �

rsh

rrb
þ 1 � rsh

rrb

� �
tan�1ð0:5aÞ

h i
x þ A0

ði ¼ 1; 2Þ ð4Þ

A0 ¼ rrb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sinð0:5aÞ � x

rrb

	 
2
s

� rrb cosð0:5aÞ ð5Þ

x ¼ 0:5rrb sin 0:5að Þ ð6Þ
where l(Buri) is a nonlinear function of the magnetic flux
density Buri. This flux density is calculated as a ratio of the
magnetic flux flowing in the flux tube associated with the
permeance element to the average cross-section area of
this tube, equal to the denominator of Eq. (4). The per-
meability is then determined by using the look-up table of
the l)B curve. For the other patterns, one of these per-
meances disappears and another is determined by Eq. (4)
with duplicated x.

The rotor yoke permeance Pry conducts a homogeneous
distributed flux and spreads over an angle of 2p/Nr

)(a1+a2), where a1 and a2 are the aforementioned angles
under two adjacent rotor poles at both ends of the yoke.

4
Airgap model
There are two different groups of permeances which are
included in the airgap model: leakage and linking. Linking
permeances, which fundamentally depend on rotor posi-
tion, link each stator pole to the rotor poles or core. They
are all determined by using the integral form of the flux
tube analysis.

P ¼ l0

Z
da

l
ð7Þ

where da, l and l0 are an increment of cross-section area,
length and magnetic permeability of the airgap flux tube,
respectively. The calculation of airgap permeances de-
pends on the geometric properties of the considered flux

tubes and here is handled using the real configuration of
the machine parts.

4.1
Airgap leakage permeances
Extensive investigations by FEM analysis of SRM with
short and full pitched windings show that there are three
different forms of winding slot leakage: pole to core, pole
side to pole side, and pole face to pole face leakage. Since
the stator slot in a SRM with full pitched winding is
generally filled by a side of one phase winding, pole to core
leakage does not appear in this case. It is also noted that
pole-face to pole-face leakage occurs only when there is
no rotor pole between the two stator poles.

4.1.1
Pole to core leakage
Since the leakage path is located in a current carrying
region, a simple magnetic formulation is used to include
the effect of the source region in the calculation of the
permeance. Pole to core leakage paths are modeled by a
series of arcs as shown in Fig. 7a. The current in half of the
slot is taken to be uniformly distributed. So the current
density in this region is given by Eq. (8).

J ¼ 4NI

hs
hslot rsb þ rsp

� �
þ bshs

 ��1 ð8Þ

Assuming that the permeance of the steel is large
compared with that of the slot, the magnetic field
strength at any given radius r, shown in Fig. 7a, is given
by Eq. (9).

Hr;pc ¼
Jr

2
1 þ Ks

Ks þ r

	 

ð9Þ

Ks ¼
bshs

ðp � bsÞ
ð10Þ

The leakage flux is assumed to be limited to half of the slot
and obtained by integration of the flux density.

Fig. 7. Airgap paths for a pole to core, b pole side to pole side,
and c pole face to pole face leakage permeances
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upc ¼
l0lstkJ

2

d2
sl

2
þ Ksdsl � Ks

2 ln
dsl

Ks
þ 1

	 
� �
ð11Þ

The permeance is then the ratio of total leakage flux to
mmf drop.

Ppc ¼
upc

NI
ð13Þ

4.1.2
Pole side to pole side leakage
The path of this leakage flux is modeled by a series of arcs
as shown in Fig. 7b. The computation of the related per-
meance is outlined in different ways for the machines with
short and full pitched windings. But the same results are
fundamentally obtained for both cases. For the machine
with short pitched winding, with the same assumptions as
before, the magnetic field strength at any given radius r,
shown in Fig. 7b, is determined as follows:

Hr;pp ¼ J

2
ðrsb � rÞ 1 þ rsb � Ku

r � Ku

	 

ð14Þ

Ku ¼ bsrsp

ðhslot þ bsÞ
ð15Þ

From this, the leakage flux can be obtained using Eq. (16)
as a function of the arbitrary radius.

ur
rsp

¼ l0lstkJ
1

4
ðr2

sp � r2Þ þ Ku

2
ðr � rsp þ B0Þ

� �
ð16Þ

B0 ¼ Ku þ
r2

sb

Ku
� 2rsb

	 

ln

r � Ku

rsp � Ku

	 

ð17Þ

The permeance of the total path between successive stator
poles is then evaluated as a series connection of two of the
same permeances associated to two halves of the slot.

Ppp ¼
P0

pp

2
¼

ur
rsp

2NI
ð18Þ

4.1.3
Pole face to pole face leakage
This leakage flux appears especially during multiphase
excitation of the SRM. Modeling of the associated flux path
is based on the concept of perpendicular circles as shown
in Fig. 7c. So, circles perpendicular to the faces of two
successive stator poles are considered. The radius and arc
length of such circles corresponding to angle m are deter-
mined by Eqs. (19) and (20).

rm ¼ rsp tanð0:5mÞ ð19Þ
lm ¼ rspðp � mÞ tanð0:5mÞ ð20Þ

Assuming that the leakage flux is restricted to half the pole
face, the average leakage permeance is given by Eq. (21).

Pff ¼ l0lstkbs C0 þ p � 2p
Ns

	 

tan

p
Ns

	 
� �
ð21Þ

C0 ¼ p � 2p
Ns

þ bs

	 

tan

p
Ns

� bs

2

	 

ð22Þ

4.2
Airgap linking permeances
These permeances, which play a major role in determining
the performance of the SRM, are modeled based on three
regions defined in Fig. 8. This figure shows an ideal
piecewise linear inductance of one phase versus rotor
angular position. The phase inductance is maximum in the
aligned position of stator and rotor poles and minimum in
the unaligned position. The important boundary angles
between these regions are determined by Eqs. (23) and
(24).

n1 ¼ 0:5ðbr � bsÞ ð23Þ
n2 ¼ 0:5ðbr þ bsÞ ð24Þ
There are five different permeances which comprise all
linking flux paths between stator and rotor: overlap, stator
pole side to rotor pole face, stator pole face to rotor pole
side, stator pole face to rotor core, and stator pole side to
rotor pole side. The graphical modeling of the airgap paths
corresponding to these permeances is shown in Figs. 9–11
for the three mentioned regions. An important assumption
observed throughout the modeling is that the total linking
flux from the face of an excited stator pole to a rotor pole
segment is restricted to the intersection of the rotor in-
terpolar axis and the stator pole face. Here, the rotor pole
segment is defined as a part of the rotor which is con-
stricted by two successive rotor interpolar axes. In other
words, while the rotor interpolar axis has not crossed the
stator pole face, there is only one rotor pole that can be
linked to the stator pole face. This most useful hypothesis
guarantees the symmetry of the airgap modeling in the

Fig. 8. Ideal trapezoidal variations of phase inductance and three
defined regions

dsl ¼
hs 0:5hsð1 � 0:5bsÞ=rsb < sinð0:25hslotÞ
2rsb sinð0:25hslotÞ þ 0:5bshs otherwise

�
ð12Þ
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fully unaligned position of a stator pole. Figure 11 shows
only the linking permeances between the stator pole and
one nearby rotor pole. It is evident that there is also a
linking flux between the stator pole and another nearby
rotor pole, because the rotor interpolar axis intersects the
stator pole face. Upon the above assumption, four states
can be generally considered for partially overlapping stator
and rotor poles (region 2) during rotor rotation. The
occurrence of each state is dependent upon the
geometric properties of the machine. These states are

defined as follows, based on airgap paths 1 and 2 shown in
Fig. 10.

1. There is only the airgap path 2, and the rotor interpolar
axis does not cross the stator pole face.

2. There is only the airgap path 2, and the rotor interpolar
axis crosses the stator pole face.

3. There are both airgap paths 1 and 2, and the rotor
interpolar axis does not cross the stator pole face.

4. There are both airgap paths 1 and 2, and the rotor
interpolar axis crosses the stator pole face.

For non-overlapping stator and rotor poles (region 3),
six states are considered of which four states are identical
to the states defined above, but for the airgap paths shown
in Fig. 11. The two extra states are defined as follows.

5. There is only the airgap path 1, and the rotor interpolar
axis does not cross the stator pole face.

6. There is only the airgap path 1, and the rotor interpolar
axis crosses the stator pole face.

4.2.1
Overlap permeance
The overlap permeance occurs directly between rotor and
stator poles in the narrow region of the overlap. This
permeance is given by Eqs. (25) and (26).

Pov ¼ 0:5l0lstkðrsp þ rrpÞhov=g ð25Þ

hov ¼
bs 0 � jhj � n1

n2 � jhj n1 < jhj � n2

0 n2 < jhj

8<
: ð26Þ

The fringing effects for the aligned corners of the stator
and rotor poles are considered by introducing an average
fringing permeance which is in parallel with the overlap
permeance and given by Eq. (27). The fringing flux tubes
are assumed to be several semicircles extended to a very
small cross section of the airgap.

Pfr ¼
2l0lstk

p
ð27Þ

Fig. 9. Graphical modeling of airgap paths for region 1

Fig. 10. Graphical modeling of airgap paths for region 2

Fig. 11. Graphical modeling of airgap paths for region 3
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4.2.2
Stator pole side to rotor pole face permeance
The flux tube, linking a stator pole side to a rotor pole face,
is modeled by two different shapes for overlapping and
non-overlapping stator and rotor poles, as shown in
Figs. 9–11. For overlapping stator and rotor poles, the
permeance is determined by Eq. (28).

Pssrp ¼ l0lstk

0:5p þ ha
ln 1 þ rrpð0:5p þ haÞha=ðgÞ
 �

ð28Þ

where ha is shown in Fig. 10. The flux flowing through this
permeance is assumed to be restricted either to the upper
half of the stator pole side or to half of the stator slot angle.
Upon this assumption, ha may be restricted to one of the
following angles, whichever is smaller.

h5 ¼
hs

2rrp
ð29Þ

h6 ¼
p
Ns

� bs

2
ð30Þ

For non-overlapping stator and rotor poles, the permeance
is calculated by Eq. (31).

Pssrp ¼
l0lstk

ð0:5pþhaÞ
	 ln 1þð0:5pþhaÞðkmax �khÞ=ðg þkh 
hþxhÞ½ �

ð31Þ
where kmax is given by Eq. (32).

kmax ¼
rrpbr þ kh ha < h5&ha < h6

rrph5 ha  h5&h5 < h6

rrp h6 � hspace

� �
þ kh ha  h6&h6 < h5

8<
: ð32Þ

hspace ¼ h � n2 ð33Þ
Ignoring the small airgap length for non-overlapping
stator and rotor poles, three important parameters are
defined by Eqs. (34)–(36), as shown in Fig. 12.

kh ¼ rrp cos 0:5br � cosðh � 0:5bsÞ½ � ð34Þ

xh ¼ rrp sinðh � 0:5bsÞ � sin 0:5br½ � ð35Þ
sh ¼ rrp cosðh � 0:5bsÞ � sr½ � ð36Þ

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrb=rrp

� �2� sin2ð0:5brÞ
q

ð37Þ
This permeance disappears at an angle called h7, when
kmax ¼ kh.

4.2.3
Stator pole face to rotor pole side permeance
This permeance is identified by the airgap path 2 in
Figs. 10 and 11. This airgap path is modeled using a series
of arcs and straight lines. The arcs correspond to an angle
of p/2+n1)h. The straight lines are perpendicular to the
rotor pole side. The permeance is given by Eq. (38) for
overlapping stator and rotor poles.

Psprs¼
l0lstk

0:5pþn1�h
ln 1þrrpðh�n1�h0Þð0:5pþn1�hÞ=g
 �

ð38Þ

h0 ¼
0 ðstate : 1Þ
h � h2 ðstate : 2Þ
h � n1 � ðhr=rrpÞ ðstate : 3& 4Þ

8<
: ð39Þ

h2 ¼
p
Nr

� bs

2
ð40Þ

where h2 is a relative angle between the stator and rotor
poles at which the rotor interpolar axis touches the corner
of the stator pole face. The permeance is given by Eq. (41)
for non-overlapping poles, as shown in Fig. 11.

Psprs ¼
l0lstk

0:5p þ n1 � h

ln 1 þ rrpðbs � h00Þð0:5p þ n1 � hÞ=ðg þ xhÞ
 �

ð41Þ

h00 ¼

0 ðstate : 1Þ
h � h2 ðstate : 2Þ
bs � ðsh=rrpÞ ðstate : 3& 4Þ
bs ðstate : 5& 6Þ

8>><
>>: ð42Þ

This permeance disappears, when the relative angle be-
tween the stator and rotor poles is greater than one of the
two following angles, whichever is smaller.

h4 ¼ 0:5bs þ cos�1ðsrÞ ð43Þ

h8 ¼
p
Nr

þ bs

2
ð44Þ

The angle h4 corresponds to a condition that sh is equal to
zero. The angle h8 corresponds to a condition that the
rotor interpolar axis touches the next corner of the stator
pole face. These conditions fundamentally result from the
presence and absence of airgap path 1 respectively.

4.2.4
Stator pole face to rotor core permeance
This permeance which has not been considered in previ-
ous work, plays an important role in determining the flux
distribution in the unaligned and non-overlappingFig. 12. Graphical definition of some parameters for region 3
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positions (region 3). The flux tube associated with this
permeance conducts the radial flux lines. The permeance
is simply determined by Eq. (45).

Psprc ¼
l0lstk

2ðrsp � rrbÞ
ðrsp þ rrbÞhsprc ð45Þ

where hsprc for overlapping stator and rotor poles is:

hsprc ¼
0 ðstate : 1&2Þ
h � n1 � ðhr=rrpÞ ðstate : 3Þ
h8 � n2 � ðhr=rrpÞ ðstate : 4Þ

8<
: ð46Þ

and for non-overlapping poles is:

hsprc ¼

0 ðstate : 1&2Þ
bs � ðsh=rrpÞ ðstate : 3Þ
h8 � h � ðsh=rrpÞ ðstate : 4Þ
bs ðstate : 5Þ
h8 � h ðstate : 6Þ

8>>>><
>>>>:

ð47Þ

4.2.5
Stator pole side to rotor pole side permeance
The flux flowing between stator and rotor pole sides is ob-
served in the unaligned and non-overlapping positions of
the stator and rotor poles for the most SRMs analyzed by
FEM. This flux path is not clearly addressed by other au-
thors. The associated permeance is calculated based upon
the three defined parameters in Eqs. (34)–(36) and the
shape of the flux tube illustrated in Fig. 11. While this airgap
path is not constricted by the end of the rotor pole side at the
root of the rotor pole, the permeance is given by Eq. (48).

Pssrs ¼
l0lstk

h
ln 1 þ lc

g þ xh
h

	 

ð48Þ

lc ¼ kh ðh � h7Þ
kmax ðh > h7Þ

�
ð49Þ

Otherwise, when the end of the rotor pole side at the root
of the rotor pole restricts this flux path, the permeance is
given by Eq. (50). This condition occurs only when the
airgap path 2 has already disappeared.

Pssrs ¼
l0lstk

h
ln 1 þ lc

g þ xh þ ðkh � hrÞh
h

� �
ð50Þ

lc ¼ hr ðh � h7Þ
kmax þ hr � kh ðh > h7Þ

�
ð51Þ

This permeance disappears at an angle called h9, when
kh ¼ kmax+hr.

5
Complete model and solution
For a SRM with Ns stator poles and Nr rotor poles, the
complete magnetic equivalent circuit model includes sev-
eral sub-circuits such as those shown in Fig. 13. For sim-
plicity, the airgap linking permeances have been shown by
dashed lines, and the airgap leakage permeances as well as
the saturable iron permeances have been emphasized. For
the SRM with full pitched winding, magneto motive force
(mmf) sources have been proposed by [10] in series with
stator yoke permeances. In this machine, the flux is

directed through each stator pole by two phases, unlike the
machine with short pitched winding in which only one
phase directs the flux through an excited stator pole.
Therefore, there are two different mmf sources in the sub-
circuit: one in series with the stator yoke for SRM with full
pitched winding and another in series with the stator pole
for the machine with short pitched winding. For each case,
only the appropriate mmf sources are then used, and the
other mmf sources are taken to be zero. In addition, for
the machine with full pitched winding, pole to core leakage
permeances vanish. The existence of the airgap linking
permeances between each pair of stator and rotor poles is
dependent on their relative position. While the relative
angle between their axes is greater than h9, there will be no
airgap path between them. Otherwise, the permeances of
stator pole tip, rotor pole and linking airgap for each
airgap path are determined and combined. Then, the re-
sulting permeances for parallel airgap paths are merged
together to make a single permeance in the circuit model,
representing the existent flux path between a pair of stator
and rotor poles.

The complete circuit may be solved by node, mesh or
other circuit analysis methods. To simplify formulae in the
next sections, the mesh method is selected. The resulting
matrix equation is then given by:

½Z�½U� ¼ ½F� ð52Þ
where Z, F, and F are impedance or reluctance matrix,
mesh flux vector, and mmf source matrix, respectively.
The elements of the reluctance matrix comprise some se-
ries and parallel combinations of the airgap and saturable
permeances. Each saturable iron permeance is nonlinearly
dependent on the magnetic flux flowing through its cor-
responding flux tube. This magnetic flux can be repre-
sented by a combination of the mesh fluxes. So the
elements of the reluctance matrix are nonlinearly depen-
dent on the mesh fluxes. In other words, Z is a nonlinear
function of F in Eq. (52), and the resulting matrix equa-
tion will be nonlinear. Therefore, it should be solved using
an iterative method such as Gauss–Seidel or Newton–
Raphson. The Newton–Raphson method requires calcula-
tion of the Jacobian matrix whose elements will be func-
tions of partial differentials of the permeances with respect
to the mesh fluxes. Since the permeances are not the ex-
plicit functions of the mesh fluxes, the analytic derivative
is not possible and a numerical derivative should be used.
However, this can adversely affect the accuracy of the re-

Fig. 13. Sub-circuit of the proposed magnetic equivalent circuit
model
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sults. Therefore, a Gauss–Seidel method is used to solve
Eq. (52). The solution process begins with an initial flat
permeability for iron parts and zero values for the angles a
under all rotor poles. Then, all airgap and saturable per-
meances are calculated, and Eq. (52) is solved. The branch
fluxes are determined from the resulting mesh fluxes and
the values of the saturable permeances calculated at the
last step. Then, the cross-section areas of the flux tubes
corresponding to the stator and rotor pole tips using
Eq. (1), the new values of the angles a, and the new values
of the permeances are calculated, and Eq. (52) is solved.
This iterative process is repeatedly executed to reach an
acceptable error between the successive solutions of the
mesh fluxes.

6
Dynamic analysis
For the dynamic analysis, the flux linkage of each phase Yi

(i ¼ 1, ..., Nph) is given by:

Wi ¼ Nwi ¼
Z t

0

ðV � RiiÞdt ð53Þ

where Wi, V, R and Nph are the magnetic flux in each stator
pole excited by the ith phase, the applied voltage to each
phase, the phase resistance and the number of machine
phases, respectively. The discrete form of Eq. (53) is given
by Eq. (54):

Wi ¼ Wi0 þ ðV � Rii0ÞðDh=xmÞ ð54Þ
where xm and Dh are respectively the rotor angular speed
and an increment of the rotor angle, and the subscript 0
denotes the values of the quantities from the preceding
step. The flux linkage of each phase is determined using
Eq. (54) at each step of rotation based on the values of the
phase current and flux linkage at the last step. So, the flux
linkage of each phase is known from Eq. (54) at each step
during the dynamic analysis, and the current of each phase
should be calculated by using the machine model. This is
completely opposed to the procedure used to determine
the static magnetization curves where the phase current is
known as a predefined value, and the flux linkage of the
phase winding should be calculated by using the machine
model. The form of Eq. (52) is much more suitable for the
latter procedure than for the former one. Because the mmf
matrix F is known for the latter procedure, Eq. (52) will be
a classical nonlinear matrix equation. But for the former
procedure, some mesh fluxes and all mmf sources are
unknown. So, Eq. (52) should be somewhat manipulated
to be solved for the phase currents. For simplicity,
one-phase excitation of the SRM is considered initially.

Assuming that the stator poles of the excited phase par-
ticipate in mesh-loops 1, 2, k and k+1, the magnetic flux in
each of these poles is given by:

w1 ¼ u1 � u2 ¼ uk � ukþ1 ð55Þ

In this case, one can write F ¼ ENi1 where:

½E� ¼ 1 �1 0 
 
 
 0 1 �1 0 
 
 
 0½ �T ð56Þ

Adding the first equation to the second and (k+1)th
equations of Eq. (52), and subtracting it from the kth
equation, vector E is converted to a vector which has only
one non-zero element in the first row. Replacing u1 in
terms of w1 from Eq. (55), Eq. (52) can be formed as:

or

R11 R12

R21 R22

� �
w1

U0

� �
¼ 1

0

� �
Ni1 ð58Þ

Given the value of W1, F¢ is obtained from solving
Eq. (58) by the same iterative method as mentioned for
Eq. (52).

R22U
0 ¼ �R21w1 ð59Þ

Then,

Ni1 ¼ R11w1 þ R12U
0 ð60Þ

Similarly, this procedure can be applied to multiphase
excitation. For example, in the case of two-phase excita-
tion, the final matrix equation is given by:

R11 0 R13

0 R22 R23

R31 R32 R33

2
4

3
5 w1

w2

U0

2
4

3
5 ¼

1 0
0 1
0 0

2
4

3
5 Ni1

Ni2

� �
ð61Þ

or

R33U
0 ¼ �R31w1 � R32w2 ð62Þ

Ni1 ¼ R11w1 þ R13U
0 ð63Þ

Ni2 ¼ R22w2 þ R23U
0 ð64Þ

It should be noted that because of the special configuration
of the proposed circuit model, any mesh cannot include
two or more mmf sources. So, F¢ is obtained from solving
Eq. (62), and then i1 and i2 are readily calculated by using
Eqs. (63) and (64).

7
Calculation of torque
Assuming initially one-phase excitation, the co-energy Wc

at a given rotor position is defined by Eq. (65).

z11 z12 þ z11 z13 
 
 

z21 þ z11 z22 þ z12 þ z21 þ z11 z23 þ z13 
 
 


..

. ..
. ..

.

zk1 � z11 zk2 � z12 þ zk1 � z11 zk3 � z13 
 
 

zðkþ1Þ1 þ z11 zðkþ1Þ2 þ z12 þ zðkþ1Þ1 þ z11 zðkþ1Þ3 þ z13 
 
 


..

. ..
. ..

.

2
666666664

3
777777775

w1

u2

..

.

uk

ukþ1

..

.

2
666666664

3
777777775
¼

1
0
..
.

0
0
..
.

2
66666664

3
77777775

Ni1 ð57Þ
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Wc ¼
Z i1

0

W1ðh; i0Þdi01 ¼
Z Ni1

0

w1ðh; i01ÞdðNi01Þ ð65Þ

where the prime denotes the variable of the integration.
This integration is equal to the area under the nonlinear
curve of w1(Ni1) at a given rotor position. This curve,
which is fundamentally the static magnetization curve of
one phase of the machine corresponding to the given rotor
position, cannot be formed as an analytic function. So, the
integration in Eq. (65) is numerically approximated. If
Df ¼ Ni1/m is the width of the stripes for the discrete in-
tegration and w1j (j ¼ 1, ..., m) is the flux value of the
excited stator pole obtained by solving Eq. (52) for jDf as
the mmf source corresponding to the excited phase, then
the co-energy is approximated by:

Wc ¼
Xm

j¼1

w1j � 0:5w1m

 !
Df ð66Þ

A graphical illustration of this approximation is shown
in Fig. 14. Evidently, the accuracy of the evaluated
co-energy in Eq. (66) is dependent upon the value of m
so that the greater values of m yield the better ap-
proximations of the continuous integration in Eq. (65).
Calculating this quantity for two very close positions of
the rotor with the same phase current, the torque is
given by Eq. (67).

Tðh; i1Þ ¼ � @Wcðh; i1Þ
@h

¼ Wcðh; i1Þ � Wcðh þ Dh; i1Þ
Dh

ð67Þ
A similar procedure can be used to evaluate the torque by
using the stored energy. In this case, the required points of
the nonlinear curve of Ni1(w1) for a discrete integration
should be calculated by using a procedure as explained for
dynamic analysis. Because the value of the flux for each
point of the curve is known, the corresponding mmf value
of the excited phase should be determined. However, the
numerical method need 2m times the solution of Eq. (52),
and it can be very time consuming.

A corresponding analytic approach can be derived by
using Eq. (58) and the concept of the stored energy as
follows:

Wf¼
Z W1

0

i1dW1¼
Z w1

0

ðNi1Þdw1

¼
Z w1

0

R11�R12R�1
22 R21

� �
w1dw1¼0:5 R11�R12R�1

22 R21

� �
w2

1

ð68Þ

Tðh;w1Þ ¼
@Wfðh;w1Þ

@h
¼ 0:5w2

1

@ R11 � R12R�1
22 R21

� �
@h

ð69Þ

Since R11, R12 and R21 are fundamentally no functions of h,
then:

Tðh;w1Þ ¼ �0:5w2
1

@R�1
22

@h
¼ 0:5w2

1R22
@R22

@
R22 ð70Þ

using:

@

@h
R22R�1

22

� �
¼ @

@h
ðIeÞ ¼ 0 ð71Þ

This analytic approach assumes that Rij (i ¼ 1, 2 &
j ¼ 1, 2) obtained from solving Eq. (58) for the flux
value of w1 is constant during the calculation of the
integration in Eq. (68). This assumption is correct for a
linear static magnetization curve, where Rij is no func-
tion of w1 (or i1). Consequently, this approach gives
more acceptable results for the machines with low levels
of saturation [8].

For two-phase excitation, the co-energy at a given rotor
position is calculated in steps as follows.

Wcðh; i1; i2Þ ¼
Z i1

0

W1ðh; i01; i02 ¼ 0Þdi01

þ
Z i2

0

W2 h; i01 ¼ i1; i02
� �

di02

¼
Z Ni1

0

w1ðh;Ni01;Ni02 ¼ 0ÞdðNi01Þ

þ
Z Ni2

0

w2ðh;Ni01 ¼ Ni1;Ni02ÞdðNi02Þ ð72Þ

The two last integrals can be numerically calculated like
Eq. (66). For this purpose, Eq. (52) is solved m times with
jDf1 (j ¼ 1, ..., m) as the mmf source of phase 1 and zero as
the mmf source of phase 2, where Df1 ¼ Ni1/m, in order to
calculate the first integral in Eq. (72). Then, it is solved
again m times with Ni1 as the mmf source of phase 1 and
jDf2 (j ¼ 1, ..., m) as the mmf source of phase 2, where
Df2 ¼ Ni2/m, in order to calculate the second integral in
Eq. (72). The nonlinear curve of W2(h, Ni¢1 ¼ Ni1, Ni¢2) is
the static magnetization curve of phase 2 at a given rotor
position of h, when phase 1 is excited by a constant current
level of i1. The torque is then evaluated like Eq. (67).

Tðh;i1;i2Þ¼�@Wcðh;i1;i2Þ
@h

¼Wcðh;i1;i2Þ�WcðhþDh;i1;i2Þ
Dh

ð73ÞFig. 14. Graphical illustration of discrete integration for ap-
proximating the co-energy
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The analytic approach for calculating the torque can be
derived in a similar way to one-phase excitation using the
stored energy. The stored energy at a given rotor position
is calculated in steps as:

Wf h;w1;w2ð Þ ¼
Z w1

0

Ni1 h;w0
1;w

0
2 ¼ 0

� �
dw0

1

þ
Z w2

0

Ni2 h;w0
1 ¼ w1;w

0
2

� �
dw0

2

¼
Z w1

0

R00
11 � R00

12R00�1
22 R00

21

� �
w0

1dw0
1

þ
Z w2

0

�R000
23R000�1

33 R000
31w1


þ R000

22 � R000
23R000�1

33 R000
32

� �
w0

2

�
dw0

2

¼ 0:5 R00
11 � R00

12R00�1
22 R00

21

� �
w2

1

� R000
23R000�1

33 R000
31w1w2

þ 0:5 R000
22 � R000

23R000�1
33 R000

32

� �
w2

2 ð74Þ
where R00

ij (i ¼ 1, 2 & j ¼ 1, 2) and R000
ij (i ¼ 1, 2, 3 & j ¼ 1, 2,

3) are obtained from the solution of Eq. (75) and Eq. (76),
respectively.

R00
11 R00

12

R00
21 R00

22

� �
w1

U0

� �
¼ 1

0

� �
Ni1 ð75Þ

R000
11 0 R000

13

0 R000
22 R000

23

R000
31 R000

32 R000
33

2
4

3
5 w1

w2

U0

2
4

3
5 ¼

1 0
0 1
0 0

2
4

3
5 Ni1

Ni2

� �
ð76Þ

Since only R00
22 and R000

33 are functions of h, the torque is
given by Eq. (77).

Tðh;w1;w2Þ ¼
@Wf ðh;w1;w2Þ

@h
¼ �0:5R00

12

@R00
22�1

@h
R00

21w
2
1

� R000
23

@R000
33�1

@h
R000

31w1 þ 0:5R000
32w2

� �
w2

ð77Þ

For a SRM operating with more than two phases con-
ducting simultaneously, other integrals representing the
stored energy or co-energy of the other excited phases are
added to Eq. (74) and Eq. (72), respectively. Each extra
integral maintains the current level of each phase whose
corresponding stored energy or co-energy has been al-
ready considered by the last integrals, and builds up the
current of the next phase.

8
Rotor skew
It has been shown that, using a set of 2-D FEM models
corresponding to slices of a machine with skewed rotor
poles, a good estimation of the machine characteristics can
be obtained comparable with 3-D FEM results [12]. In this
method, the slices have the same lengths as a fraction of the
rotor length. Each characteristic of the machine is obtained
from superposing the related results for the slices. So, using
the new proposed model of a non-skewed machine, the
results can be evaluated for the skewed machine by cal-
culating a sum of the characteristics of the slices.

Table 1. Main parameters of the test SRM

Parameter description Value

Stator outer diameter 215 (mm)
Stator yoke inner diameter 195 (mm)
Rotor diameter 146 (mm)
Rotor yoke outer diameter 94 (mm)
Shaft diameter 50 (mm)
Airgap length 0.3 (mm)
Stack length 200 (mm)
Number of rotor poles 8
Number of stator poles 12
Rotor pole arc 18 (deg)
Stator pole arc 13 (deg)
Number of winding turns 18 turns/pole
Number of pole per phase 4
Maximum current 400 (A)
DC supply voltage 220 (V)

Fig. 15. Flux linkage (a) and static torque characteristics (b) for
non-skewed machine
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Fig. 16a–e. Flux linkage and static torque characteristics for non-
skewed machine: a torque–FEM; b torque–new model analytic
approach; c torque–new model numerical approach; d flux link-
age–FEM; e flux linkage–new model
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Fig. 17. Flux linkage (a) and static torque characteristics (b) for
skewed machine

Fig. 18a, b. Phase current and voltage waveforms for working
points of: a 500 rpm and 30 N m; b 3000 rpm and 100 N m
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For dynamic analysis which has already been described,
the circuit model is solved at each step of the rotation to
determine the values of the mmf sources of the phases and,
in turn, the values of the currents of the phases. So, the
superposition of the results for the slices should be
considered in the model equations for the dynamic anal-
ysis of a skewed machine.

In the case of one-phase excitation, Eq. (58) can be
rewritten for the kth slice (k=1, ..., K) as follows:

kR

� �
kw1
kU0

� �
¼ 1

0

� �
Ni1 ð78Þ

where:

w1 ¼
XK

k¼1

kw1 ð79Þ

For all slices, the total set of equations can be accumulated
into one matrix equation as in Eq. (80).

1R
. .
.

KR

2
64

3
75

1w1
1U0

..

.

Kw1
KU0

2
66664

3
77775 ¼

1
0
..
.

1
0

2
66664

3
77775Ni1 ð80Þ

By substitution of 1w1 from Eq. (79) and some manipula-
tions, Eq. (80) gives:

Z11 Z12

Z21 Z22

� �
w1

U00

� �
¼ 1

0

� �
Ni1 ð81Þ

This relation is perfectly similar to Eq. (58) and solved by
the same method. So, the generalization of dynamic
analysis for the skewed SRM with multiphase excitation is
readily accomplished similarly to the case of the non-
skewed machine.

9
Comparison of simulation and experimental results
The new model was applied to obtain the static charac-
teristics of a 35-kW, three-phase, 12/8 SRM which was

designed and constructed in the department of electrical
machines of Aachen University [13]. The main parame-
ters of the machine are given in Table 1. At first, the new
model was compared with 2-D FE analysis for the
non-skewed machine. The results for one phase excited
by the constant mmf of 200, 1,000, and 1,400-A-turns are
given in Fig. 15. Figure 15b includes the results for the
static torque calculated using the analytic and numerical
approaches of the new model. The numerical approach
with m ¼ 8 in Eq. (61) yields better results than the
analytic approach, but it needs 16 times the solution of
Eq. (52). More results are given in Fig. 16 for the
constant mmf, increasing in 100-A-turn steps from 100
to 1,400-A turns. Close agreement between the results
of FEM and the new model for the non-skewed machine
is evident in all the cases. Figure 17 shows the
comparative results of the static characteristics for the
skewed machine. The measured values are compared
with the skewed results obtained from 2-D FE analysis
and the new model of the non-skewed machine.
Because of the large length of the machine with
respect to its external diameter, the end effects are
negligible. Consequently, there is a close agreement be-
tween 3-D FEM results and the skewed results of 2-D
FEM.

The results of dynamic simulation using the procedure
described in Sect. 8 are shown in Fig. 18 for the new
model against the measured results. The phase current
and voltage waveforms are shown for two working points
of 500 rpm, 30 N m and 3,000 rpm, 100 N m. The mea-
sured and predicted waveforms agree well. Finally, Fig. 19
shows the comparative results of the static torque char-
acteristics of a 6/4 SRM for two phases conducting si-
multaneously. One phase is excited up to 1,000-A turns
and another phase is excited up to 0, 500 and 1,000-A
turns. The motivation to take this machine as an example
is that the simultaneous excitation of two phases of this
machine up to the same mmf value of 1,000-A turns
causes saturation in the stator yoke of the machine. This
is a direct result of the width of the stator yoke being
smaller than half the stator pole width [11]. The model-
ing of the machine with the saturated stator yoke can
best show the performance of the new model. As shown,
the results for the new model and FE analysis are in good
agreement.

Conclusion
A general nonlinear model of a SRM was introduced based
on the concept of the magnetic equivalent circuit covering
all possible flux paths in a 2-D view of the machine. The
model includes the effects of mutual coupling between
phases and multiphase excitation, representing an efficient
analyzing tool for CAD and optimal design. New tech-
niques were employed to model the stator and rotor poles
and the rotor core. The analytic and numerical matrix
procedures were addressed to calculate the machine tor-
que. Dynamic simulation of the machine was formulated
for machines with skewed and non-skewed rotor poles.
Finally, the maturity of the model was verified by com-
parison of simulation with finite element analysis and
measurements.

Fig. 19. Static torque characteristics of a 6/4 SRM for two phases
conducted simultaneously
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