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Abstract The resolution of magnetic resonance imaging, commonly known as MRI, depends on
the homogeneity and field strength of the used primary magnetic field ~B0 over the volume of
interest. In clinical tomographs homogeneous fields are produced by solenoid coil windings or long
round permanent magnets. These solutions are unsuitable for mobile usage because of weight
and costs. This paper introduces an optimized magnetic circuit for a mobile universal surface
explorer (MOUSE) which meets the requirements of sufficient homogeneity and low weight.

1. Introduction
The application of nuclear magnetic resonance (NMR) is based on the influence
of an externally applied magnetic field ~B0 on the nuclei' orientation. In the
presence of an external field the magnetic moment ~� will be aligned parallel or
anti-parallel towards the ~B0-field and a resulting magnetization ~M will occur.
This magnetization processes around the axis of the applied field with the
Larmor frequency fL � 


2�B0 (
: `̀ gyromagnetic'' ratio). The aligned
magnetization vector can be excited by a high frequency pulse at the Larmor
frequency. Only nuclei with fL � 


2�B0 will be affected.
Figure 1 shows the principle design of the MOUSE. The sample (e.g. human

tissue, synthetic material) should be placed onto the measuring instrument.
This design restriction causes an inhomogeneous field-strength distribution.
The B0-field decreases with increasing y-coordinate; the decrease of the field
along the y-axis follows the equation B � B0�y � 0� � aÿky with a > 1; k > 0.
For magnetic resonance imaging a linear field gradient is required because only
certain spins in selected slices �y of the sample should be in resonance. In the
case of the considered NMR-MOUSE the penetration depth is the y-axis. In the
selected slice �y only nuclei which meet the frequency requirement
�f � 


2��B0 are excited by a high frequency pulse with the bandwith �f .
Only these nuclei contribute to the test signal. Because of the wanted linear
gradient there is a linear relationship between the bandwith �f and the slice
thickness �y.

A small linear gradient �B0

�y
of the main field B0 effects a small bandwith �f

(corresponding to �f � �B0) field which is easier to produce. A high
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magnitude of B0 provides a better signal-to-noise-ratio because of the
proportionality S � B�0 with 1 < � < 2 (Hausser and Kalbitzer, 1989). Besides,
a large gradient deteriorates depth of penetration. Figure 2 demonstrates the
effect of non-linear B0-field decrease on the depth of penetration. Either the
required bandwith �f becomes larger for the same depth of penetration, or the
selected slice-thickness becomes smaller for the same bandwith (�y1 < �y2).
Therefore a linear field distribution with a small gradient is necessary at least
over a short distance from the MOUSE surface. A small gradient, a high main
field B0 and low weight of the magnetic circuit are the demands on the NMR-
MOUSE.

For a detailed introduction to nuclear magnetic resonance (relaxation
processes) and image reconstruction (two-dimensional Fourier imaging) it is
referred to literature dealing with NMR and MRI (Jin, 1999; Vlaardingerbroeck
and de Boer, 1996; Kimmich, 1997). A description of hollow cylindrical
tomographs for clinical applications can be found in Zijlstra (1985).

2. 2D calculations
The following examinations are limited to 2D calculations and optimizations.

Figure 1.
Principle of the
NMR-MOUSE

Figure 2.
Starting and wanted
field-strength
distribution in
comparison to ideal
homogeneity;
�B0 � �!
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2.1 Field calculations
The B0-field is a pure static magnetic field and therefore the magnetic vector
potential formulation ~B � r� ~A is used for solving the FEM-problem. This
formulation is implemented in the solver of the commercial FEM-program
ANSYS. ANSYS is used for the following presented results.

2.2 Pole shoe shape influence on B0-field
An empiric examination of different pole shoe shapes is hardly possible without
a suitable aid because the pole shoe coordinates must be changed for each new
pole shoe shape. A program automates this series (Figure 3). The following pole
shoe shapes in Figures 4 and 5 have a height of 10mm, the airgap is 45mm, the
dimensions of the lower horizontal magnet are 45mm� 80mm, those of the
vertical magnet are 80mm� 80mm. These pole shoes only represent a selection
of investigated pole shoe shapes. Figure 6 shows that the pole shoe shape does
not affect the gradient of B0 in y-direction. The most suitable pole shoe
geometries regarding a high flux density B0 are the models one and three (from
the left side) in Figures 4 and 5.

3. Deflection magnets
The results above demonstrate that a simple C-core with pole shoes upon the
magnets does not affect the gradient. For this reason a deflection magnet
(Figure 7) which is magnetized in x-direction is attached in the airgap. By using
deflection magnets it is possible to achieve an almost constant field distribution
at least for the first 10mm in y-direction. The position of the deflection magnet
(Figure 8) in the airgap is important for the B0-shape as it is shown in Figure 9.
This position has an effect on the gradient of B0 as well as on the induction
value and can avoid a local maximum of B0-field distribution which is in the
way of image reconstruction. An optimization tool is used in order to find
suitable dimensions of the used magnets.

4. Design optimization
The optimal gradient shape combined with a high field strength is achieved by
an optimization loop. The FEM-program ANSYS offers different optimization
tools (ans,). There are three types of optimization variables:

(1) The independent variables are called design variables.

~x � x1 x2 � � � xn�� �1�

Figure 3.
Defining pole shoe

shapes by using relative
coordinates
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Figure 4.
Pole shoe 1 and 2

Figure 5.
Pole shoe 3 and 4

Figure 6.
Comparison of different
pole shoe shapes
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They determine the geometry of the NMR-MOUSE such as magnets'
height and width and position of the deflection magnet. Design variables
can be changed by the optimization algorithm in order to fulfil certain
requirements expressed by state variables. Design variables are
restricted by lower and upper limits:

xi � xi � xi�i � 1; 2; . . . ; n� �2�

These limits depend on the allowed or wished dimensions of the NMR-
MOUSE. For example, one aim of the optimized NMR-MOUSE is a
certain weight that must be kept. For this reason there are certain design
restrictions regarding the external dimensions of the MOUSE.

Definitely the following five parameters have been chosen as design
variables for 3D calculations:

. Width of airgap.

. Depth of airgap.

. Width and height of the main vertical magnets on the left and right
side of the NMR-MOUSE.

. Depth of the inner vertical magnets (modified deflection magnets,
Figure 13) next to the main vertical magnets.

Figure 7.
Proportions for

arrangements with
deflection magnets

Figure 8.
Arrangements without

and with (1,2) deflection
magnets. The position of

the deflection magnets
can be varied
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In ANSYS up to 60 design variables can be defined, but an increasing
number of design variables reduces the chance of finding an optimal
arrangement for the NMR-MOUSE because of too many possible
variations within the lower and upper limits (xi � xi � xi) of all defined
design variables.

(1) The optimization algorithm tries to minimize the objective function

f � f �~x� �3�
so that state variables are kept. The objective function is a weighted
function of the required gradients. The following term defines the objective
function as a function of desired field gradients, absolutely wanted flux
density values B0 along the penetration depth (y-axis, Figure 1) and weight
of the NMR-MOUSE which depends on the design variables~x:

f �~x� � dB0�y�
dy
jx�0�

B0�y � 0mm�
0:25T

jx�0�
B0�y � 20mm�

0:225T
jx�0�weightMOUSE�~x�

�4�

(3) The state variables are defined by the necessary field strength B0�yi� in
a certain depth of penetration. The optimized magnetic circuit should
supply required flux density within defined limits at y � 0mm,

Figure 9.
Comparison of
arrangements with
deflection magnets
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y � 20mm and y � 40mm.

wi � wi�~x� � wi �5�
NdFeB has been chosen as magnetic material for all optimization loops.
For the final optimized geometry the magnetic characteristics of the
used NdFeB material are:

. remanence flux density = 1:33T

. coercive field strength = 796 kA
m

5. Verification of FEM calculations' accuracy
A way of influencing the gradient of the NMR-MOUSE has been introduced for
2D calculations. In contrast to electrical machines there is a great airgap and no
surrounding iron yoke. The accuracy of the FEM-calculations essentially
depends on the amount of integrated air volume. An increasing number of air
elements with �R � 1 decreases the induction value B0 along the y-axis. For
this reason a far-field boundary condition is used. A verification of the FEM-
calculated solution is the comparison of solutions with far-field boundary
conditions to solutions with Dirichlet boundary conditions on the boundary of
the FEM domain. The solution with Dirichlet boundary conditions should
converge to that with far-field boundary conditions if the integrated air volume
expands. Table I verifies this assumption for penetration depths at y � 0mm
(on the MOUSE surface), y � 20mm and y � 40mm.

First order triangle elements (plane13 in ANSYS) have been chosen for two
dimensional calculations, tetrahedral elements (solid97 in ANSYS) for three
dimensional calculations. The unbounded problem has been modelled by
infin110 (2D) and infin111 (3D) elements with four (2D) and eight (3D) nodes
respectively. Figure 10 shows the meshed magnets.

Far-field
boundary
conditions

B0=mT Dirichlet boundary conditions B0=mT
Penetration depth/mm 30cm air 30cm 60cm 90cm 150cm

0 352.16 379.00 359.80 355.76 353.65

20 353.02 376.71 359.56 356.00 354.15

40 294.25 315.55 300.06 296.92 295.27

Number of elements 14.186 15.017 26.967 43.593 90.850

Number of nodes 7.329 7.735 13.912 22.426 46.458

Computation time/
min:sec 1:22.1 1:33.5 2:41.1 4:22.1 9:17.9

Disk space/MB used
by ANSYS result files 18 33 57 86 178

Table I.
Comparison of 2D

solutions with infinite
boundary elements to

2D solutions with
conventional boundary

condition
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6. 3D calculations
6.1 Elimination of stray flux
A large problem of 3D calculations is the appearing stray flux in z-direction.
Table II shows the influence of model's depth. For these calculations the
introduced 2D arrangement with deflection magnets within the airgap was
maintained and only extruded in z-direction. One can draw the conclusion that
two dimensional optimizations are insufficient for the NMR-MOUSE because of
the amount of surrounding air. There are two main parameters which influence
the stray flux and the gradients' shape:

. The airgap influences the gradient's shape; a larger airgap provides a
linear gradient shape (Figure 11).

. The depth of the NMR-MOUSE decreases the stray flux' effect on B0-
induction along the y-axis (Figure 12).

Therefore the two dimensionally found geometry with deflection magnets and
the position of the deflection magnets within the airgap must be slightly
modified. Figure 13 shows the principle design of the modified prototype.

The plain iron pole shoe is necessary in order to avoid a local maximum of
B0-induction shape which is a strictly monotonic function, as Figure 14
demonstrates.

6.2 Reduction of weight
The weight of this arrangement can be reduced by using highly remanent
NdFeB magnets. Besides the demand for low weight, a high magnitude of B0-

Figure 10.
Meshed FEM-model for
the magnets

2D calculations 3D calculations
Penetration depth/mm B0=mT B0=mT

0 352.16 42.75 116.79 198.33 275.05 299.32

20 352.06 91.09 158.12 230.16 290.48 307.93

40 292.52 82.64 138.43 197.7.0 245.59 259.10

Table II.
Comparison of different
model depths for the
NMR-MOUSE
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Figure 11.
Influence of the airgap

of the NMR-MOUSE

Figure 12.
Influence of the depth of

the NMR-MOUSE

Figure 13.
Prototype of the NMR-
MOUSE with modified

deflection magnets



COMPEL
20,1

278

induction and a small gradient are contradictory. One can state that field

strengths above B0�y � 0� � 250mT and �B0

�y � 1:25 T
m can only be realized

with use of much magnetic material (>30kg). This weight and costs
contradict the mobile application of the MOUSE. A possibility of reducing
weight may be a cylindrical magnetic arrangement. The surrounding
permanent magnets have a certain magnetization direction. On the one hand,
this arrangement reduces the total weight up to 50 percent, on the other hand,
it produces a tangential and not a normal field distribution concerning the y-
axis.

7. Conclusion
In this paper a way of influencing the gradient and reducing stray flux and
weight of the NMR-MOUSE has been introduced. 2D modelling and the use of
pole shoes are unsuitable for this kind of application.
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Figure 14.
B0-induction shape for
the optimized prototype


