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Absfract- A method of adaptation in the solution of three 
dimensional electromagnetic field problems is described. The 
approach is based on using a self organizing feature map to 
redistribute the nodes rather than generating new ones on each 
adaptive pass. 

Index TermsSelf-organizing feature maps, Finite element 
meshes, Neural networks, Adaptive systems. 

I. INTRODUCTION 

Over the last decade, the state-of-the-art in the simulation 
of electromagnetic devices has moved rapidly from simple 
two-dimensional models to a point at which full three- 
dimensional analysis is becoming common place. Much of 
this transition has occurred because of the developments in 
computer technology resulting in a great amount of 
computational power being available at a relatively low 
price. As a consequence, it is now not unreasonable to 
consider obtaining the solutions of problems that may need 
several hundred megabytes of main memory on a desktop 
personal computer and, given current processor speeds, these 
analyses can be performed in times of the orders of minutes 
or hours. Probably the most common method now being 
applied to the solution of electromagnetic field problems is 
that based on the finite element approach. Such a technique 
requires that the entire problem space be divided into 
elementary blocks, usually tetrahedra or hexahedra in three- 
dimensions. 

The accuracy of the solution obtained by this approach is 
highly dependent on the distribution and size of the elements 
- in general, a fine mesh is required wherever the field has a 
large variation and a coarser mesh is used elsewhere. The 
problem facing users of these methods is that the correct 
mesh for a particular analysis depends on the field variation 
through the device. However, the field variation is not 
known a priori and thus the ideal mesh cannot be 
determined. 

There are two commonly used approaches to solving this 
problem. The first is to over-discretize the entire solution 
domain. This attempts to guarantee that the mesh is fine 
enough in the critical areas but has the disadvantage that 
there are a large number of elements in the areas where the 
field is hardly varying. Thus, while an accurate solution may 
be obtained, the cost in terms of cpu time and memory is 
extremely high. The second approach is to use an adaptive 
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system in which the solution domain is initially discretized 
with as coarse a mesh as can reasonably be used. From the 
initial solution, an error map is derived and used to refine 
the mesh in parts of the problem to improve the solution 
accuracy. This process is repeated until the overall error is 
reduced to some pre-specified level. In this case, the final 
mesh is kept as small. as possible thus minimizing the 
amount of memory needed. However, each adaptive steps 
adds more degrees of freedom, thus increasing the solution 
time. It should be noted that elements are never removed 
from the mesh in this system. 

Both of these systems can result in the use of more 
degrees of fireedom than a really necessary for the accurate 
solution of a problem. Basically, the nodes suporting the 
solution are not necessarily placed in the most useful 
positions. The ideal goal of a mesh generator should be to 
provide the best solution possible for a given number of 
nodes and this means that the position of each node should 
be optimized in some way. It is the intention of this paper to 
suggest one approach to achieving this goal of optimal node 
positioning. The approach to be used is based on the 
properties of self organizing feature maps. 

I1 SELF ORGANIZING FEATURE MAPS AND MESH 
GENERATION 

Self organizing feature maps (SOFMs or Kohonen 
networks) [l] have been discussed in earlier papers as an 
approach to finite element mesh generation [2], [31, [4]. In 
reality, the method is not a true mesh generator - it is rather 
a mesh re-organizer and, when used in this way, belongs to 
the standard class of mapping mesh generators. In such an 
approach, an initial regular mesh is created based on a three- 
dimensional array of points. This forms a topological 
structure which ensures the correctness of the mesh. A 
mapping is then applied to distort the topological structure 
onto the desired geometric structure, In the case of a SOFM, 
this mapping varies from node to node. In the general case, 
there is no reason why the initial mesh should be a regular 
array of nodes and elements - it merely has to set up a valid 
topology. Thus the first step in the algorithm to be described 
is a conventional three-dimensional mesh generator. 

The SOFM then attempts to reposition the nodes in the 
mesh based on a l d  estimate of the error in the solution. 
This error is used to generate a set of training points the 
density of which is directly related to the final mesh density. 
Note that these points are not nodes of the final mesh, they 
are purely guidance for the mesh training. In the process of 
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training, the nodes of the mesh are moved fr 

maintained. Thus the final mesh can be guaranw 
distribution while the interconnections b %lVe 

A. The Learning Algorithm 

topologically correct. The terms training and learning 
often used with SOFMs because of their close relation 
with conventional neural networks. The method by 
the nodes are moved in space is referred to as the le 
algorithm. 

In a previous paper [4], the basic learning algorithm for a 
two-dimensional SOEM has been described. The approach 9 
three-dimensions is the logical extension of the 
algorithm. Essentially, a set of training points is generated 
based on the desired mesh density distribution. Each training 
point is presented to the mesh and the node closest to the 
training point is identified. This node is moved towards the 
training point. In addition, all the nodes connected to the 
nearest node, the "neighbourhood" are moved towards the 
training point. The size of the neighbourhood is defined 
based on the topological radius from the nearest node. 
Generally, only one or two radii are considered. The process 
is repeated for each training point and results in the mesh 
being "dragged" towards the highest density of training 
points. 

The updating rule is: 

1 
Field 

Solution 

wik = wik (OM) +a(e) . (x ,  - wik (old)) (1) 

Adapt 
Kohonen 

(several epochs) 

where xtL is the coordinate vector of the training point,t, 
wik the weights of the considered node (i.e. the current 
position of the node) and a(e) is a deceleration factor; k is 
the component of the coordinate vector. The period during 
which all the training points are presented to the mesh is 
known as an "epoch". The deceleration factor is reduced 
with each epoch. 

As stated above, the basic SOFM approach in three- 
dimensions is basically that previously described for two- 
dimensional situations. However, whereas the previous paper 
described a two-dimensional system where a single 
distribution of training points was provided to the mesh to 
cause the mesh re-organization, the intention here is to use 
the re-organization as a fonn of adaptation. In this case, the 
training point distribution being used is not based on any 
pre-conceived ideal mesh density but rather on the current 
error levels in the solution. Thus the approach is seen to be a 
useful complement to a conventional advancing fiont or 
Delaunay based mesh generator. 

The node moving feature of the SoFM means that nodes 
will be moved into those areas where a more refined mesh is 
needed and, at the same time, removed fiom areas where the 
mesh could be made coarser. The overall result is to adapt 

Compute Error r-7 

A. Error Calculations 

The set of training points to be used for moving nodes is 
based on a local error criterion. In the system described 
below, the local error was determined from the error in the 
divergence of B within an element and this is manifested by 
a charge on the element faces. 

The process is then one of computing the total error 
within the mesh by summing over all the tetrahedra. Next, 
the total number of training points to be used is set and a 
training point "density" found by dividing by the total error. 
Within any one tetrahedron, the global density is multiplied 
by the error in the tetrahedron and the volume of the 
element. This gives a total number of training points in a 
particular tetrahedron and these are placed randomly within 
the element. 
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B. Method 

Once a set of training points have been established, the 
learning algorithm is applied. The neighbourhood radius to 
be considered for each training point is limited to 1 since the 
size can grow rapidly in three-dimensions - at R=2 the 
neighbourhood can consist of over 100 nodes. Within the 
context of an adaptive system, there is little point in running 
very many epochs. Instead, only two epochs are used with a 
being reduced from 0.01 to 0.005 from the first to the second 
epoch. It should be noted at this point that the node moving 
algorithm requires that nodes on the surfaces of bodies 
remain on those surfaces and similarly for edges. Thus there 
is a constraint on the movement of those nodes. 

Once two epochs have been considered, a Delaunay pass 
is applied to the mesh to improve the quality of the elements 
and a new solution is calculated. 

The process is repeated until the maximum number of 
steps is reached. The complete process is shown in Fig. 1. 

Iv.  RESULTS 

The method described above has been implemented in an 
experimental three-dimensional finite element analysis code 
intended to solve bounded high frequency problems. Two 
different geometries have been considered. The first is a 
simple resonator system, the second a miter bend waveguide. 

A. The Resonator 

The resonator consists of a metallic cylinder inside a 
metallic box, Fig. 2.. The goal of the analysis is to compute 
the resonance frequency of the structure. 

The initial mesh was created using an extrusion process 
and resulted in a very uniform element distribution 
throughout the device. This is shown in Fig. 3. The adaptive 

Metallic Box Metallic Box 

I 
I 

Fig. 3. Resonator initial mesh. 

Fig. 4. Resonator final mesh. 

process was applied for seven steps using two epochs with 
the SOFM on each step. The number of training points 
generated for the SOFM was set to be 10 times the number 
of nodes in the mesh. A neighbourhood of R=l was used in 
the first epoch and R=O for the second. The final mesh is 
shown in Fig. 4. 

The figures show only the surface meshes in both cases 
and the number of nodes on the surface in both cases is the 
same. The internal re-organization of the mesh follows the 
surface change. As can be seen, the system has moved the 
nodes towards the end of the cylinder and, on the end face, 
the nodes (and elements) have been moved towards the e+’ 
Note that the total number of nodes in the two i ~ ,  

identical. The improvement in the field solution is 
demonstrated in Table I where the maximum, minimum and 
average errors in the field are given. The error values are 
normalized to the average flux density value in the solution 
and the system has considerably reduced the maximum error 
(by moving the nodes to the edge of the cylinder). However, 
the average error has reduced only by a small amount - this 

TABLE I .  
ERROR IMPROVEMENT FOR RESONATOR 

Initial Mesh Final Mesh 
Maximum Error 269% 206% 
Minimum Error 0.0036% 0.0006% 

7.53% 7.15% 

.___________.......________.......-.------ 

Fig. 2. Wireframe drawing of the resonator. 
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Fig. 5. Initial mesh for the miter bend. 

Fig. 6. Final mesh for the miter bend. 

is due to the fact that the edge is only a small proportion of 
the total volume of the problem. 

As a comparison, the resonator was also solved using a 
conventional mesh refinement (h-type) adaptive system 
using the same error criteria. In each refinement step, the 
5% worst tetrahedra (in terms of the error) were refined. The 
results are shown in Table I1 in terms of the error in the 
resonant frequency. As can be seen, the mesh re- 
organization process provides a major gain in accuracy for a 
given computational cost. While the mesh refinement system 
can give better results, it does so at a massive increase in 
computational cost. 

B. The Miter Bend 

The second geometry is a basic miter bend in a 
waveguide. The initial and final meshes are shown in Fig. 5 
and Fig.6. The same values were used for the SOFM 
parameters as in the resonator case. In this problem, the 
desired outputs were the S parameters for the model. In total 
4 passes through the adaptive system were made. Although 

TABLE 11. 
COMPARISON OF PERFORMANCE BETWEEN SOFM AND REFINEMENT FOR 

RESONATOR 

Method No. of tets Freq (GHz) Error 
Initial 14860 1.8204 2.166% 
SOFM 14860 1.8449 0.848% 
5% refined 20852 1.8565 0.227% 
10% refined 32313 1.8607 O.OOO% 

the change in the mesh structure is much less than in the 
resonator case, the small movements in the node positions 
actually had a major effect on the errors as can be seen in 
Table III. 

V. CONCLUSIONS 

The use of a self-organizing feature map as a method of 
mesh adaptation has been described. The intention is to 
produce an adaptive system which can improve the accuracy 
of a solution without an increase in the number of nodes 
being used, This leads to a reduction in both the amount of 
memory required and the cpu times taken to achieve a 
required error level. Even with the explosive growth in 
computational capabilities, this is important especially when 
the solutions of three-dimensional structures either in the 
high frequency domain or for low frequency induced current 
problems. In both cases, full vector solutions become 
necessary and the number of unknowns expands rapidly with 
the number of nodes. 

Of course, for a given number of nodes in the mesh, there 
is a limit to the minimum error which may be achieved and, 
at some point, if a further reduction in error is required, 
there is little choice but to refine the mesh with the addition 
of new nodes or an increase in the polynomial order. Thus a 
realistic system would probably use a combination of 
conventional h or p adaptation coupled with the scheme 
described here. 

The main disadvantage of the SOFM approach is the time 
taken to “train” the mesh. Depending on the number of 
nodes inserted in a typical h refinement step, the cpu costs of 
re-organizing compared to node insertion plus solution may 
be very similar. However, the gain in memory requirements 
may result in an overall faster solution time if the entire 
problem can be fitted into main memory, thus removing the 
requirement to use virtual memory. 
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