
1334 IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 3, MAY 1999

Three-Dimensional Mesh Improvement Using Self Organizing Feature Maps

Derek Dyck*, David A.Lowther*, Wolfgang Mai**, Gerhardt Henneberger**
*Infolytica Corporation, Montreal, Quebec, Canada

* *Institut fur Elektrische Maschinen, R W Aachen, D-52056 Aachen, Germany

Absfract- A method of adaptation in the solution of three
dimensional electromagnetic field problems is described. The
approach is based on using a self organizing feature map to
redistribute the nodes rather than generating new ones on each
adaptive pass.

Index TermsSelf-organizing feature maps, Finite element
meshes, Neural networks, Adaptive systems.

I. INTRODUCTION

Over the last decade, the state-of-the-art in the simulation
of electromagnetic devices has moved rapidly from simple
two-dimensional models to a point at which full three-
dimensional analysis is becoming common place. Much of
this transition has occurred because of the developments in
computer technology resulting in a great amount of
computational power being available at a relatively low
price. As a consequence, it is now not unreasonable to
consider obtaining the solutions of problems that may need
several hundred megabytes of main memory on a desktop
personal computer and, given current processor speeds, these
analyses can be performed in times of the orders of minutes
or hours. Probably the most common method now being
applied to the solution of electromagnetic field problems is
that based on the finite element approach. Such a technique
requires that the entire problem space be divided into
elementary blocks, usually tetrahedra or hexahedra in three-
dimensions.

The accuracy of the solution obtained by this approach is
highly dependent on the distribution and size of the elements
- in general, a fine mesh is required wherever the field has a
large variation and a coarser mesh is used elsewhere. The
problem facing users of these methods is that the correct
mesh for a particular analysis depends on the field variation
through the device. However, the field variation is not
known a priori and thus the ideal mesh cannot be
determined.

There are two commonly used approaches to solving this
problem. The first is to over-discretize the entire solution
domain. This attempts to guarantee that the mesh is fine
enough in the critical areas but has the disadvantage that
there are a large number of elements in the areas where the
field is hardly varying. Thus, while an accurate solution may
be obtained, the cost in terms of cpu time and memory is
extremely high. The second approach is to use an adaptive

Manuscript received June 3,1998
Email: lowther9infolytica.qc.ca

system in which the solution domain is initially discretized
with as coarse a mesh as can reasonably be used. From the
initial solution, an error map is derived and used to refine
the mesh in parts of the problem to improve the solution
accuracy. This process is repeated until the overall error is
reduced to some pre-specified level. In this case, the final
mesh is kept as small. as possible thus minimizing the
amount of memory needed. However, each adaptive steps
adds more degrees of freedom, thus increasing the solution
time. It should be noted that elements are never removed
from the mesh in this system.

Both of these systems can result in the use of more
degrees of fireedom than a really necessary for the accurate
solution of a problem. Basically, the nodes suporting the
solution are not necessarily placed in the most useful
positions. The ideal goal of a mesh generator should be to
provide the best solution possible for a given number of
nodes and this means that the position of each node should
be optimized in some way. It is the intention of this paper to
suggest one approach to achieving this goal of optimal node
positioning. The approach to be used is based on the
properties of self organizing feature maps.

I1 SELF ORGANIZING FEATURE MAPS AND MESH
GENERATION

Self organizing feature maps (SOFMs or Kohonen
networks) [l] have been discussed in earlier papers as an
approach to finite element mesh generation [2], [31, [4]. In
reality, the method is not a true mesh generator - it is rather
a mesh re-organizer and, when used in this way, belongs to
the standard class of mapping mesh generators. In such an
approach, an initial regular mesh is created based on a three-
dimensional array of points. This forms a topological
structure which ensures the correctness of the mesh. A
mapping is then applied to distort the topological structure
onto the desired geometric structure, In the case of a SOFM,
this mapping varies from node to node. In the general case,
there is no reason why the initial mesh should be a regular
array of nodes and elements - it merely has to set up a valid
topology. Thus the first step in the algorithm to be described
is a conventional three-dimensional mesh generator.

The SOFM then attempts to reposition the nodes in the
mesh based on a l d estimate of the error in the solution.
This error is used to generate a set of training points the
density of which is directly related to the final mesh density.
Note that these points are not nodes of the final mesh, they
are purely guidance for the mesh training. In the process of

0018-9464/99$10.00 0 1999 IEEE

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 11:07:27 UTC from IEEE Xplore. Restrictions apply.

1335

training, the nodes of the mesh are moved fr

maintained. Thus the final mesh can be guaranw
distribution while the interconnections b %lVe

A. The Learning Algorithm

topologically correct. The terms training and learning
often used with SOFMs because of their close relation
with conventional neural networks. The method by
the nodes are moved in space is referred to as the le
algorithm.

In a previous paper [4], the basic learning algorithm for a
two-dimensional SOEM has been described. The approach 9
three-dimensions is the logical extension of the
algorithm. Essentially, a set of training points is generated
based on the desired mesh density distribution. Each training
point is presented to the mesh and the node closest to the
training point is identified. This node is moved towards the
training point. In addition, all the nodes connected to the
nearest node, the "neighbourhood" are moved towards the
training point. The size of the neighbourhood is defined
based on the topological radius from the nearest node.
Generally, only one or two radii are considered. The process
is repeated for each training point and results in the mesh
being "dragged" towards the highest density of training
points.

The updating rule is:

1
Field

Solution

wik = wik (OM) +a(e) . (x , - wik (old)) (1)

Adapt
Kohonen

(several epochs)

where xtL is the coordinate vector of the training point,t,
wik the weights of the considered node (i.e. the current
position of the node) and a(e) is a deceleration factor; k is
the component of the coordinate vector. The period during
which all the training points are presented to the mesh is
known as an "epoch". The deceleration factor is reduced
with each epoch.

As stated above, the basic SOFM approach in three-
dimensions is basically that previously described for two-
dimensional situations. However, whereas the previous paper
described a two-dimensional system where a single
distribution of training points was provided to the mesh to
cause the mesh re-organization, the intention here is to use
the re-organization as a fonn of adaptation. In this case, the
training point distribution being used is not based on any
pre-conceived ideal mesh density but rather on the current
error levels in the solution. Thus the approach is seen to be a
useful complement to a conventional advancing fiont or
Delaunay based mesh generator.

The node moving feature of the SoFM means that nodes
will be moved into those areas where a more refined mesh is
needed and, at the same time, removed fiom areas where the
mesh could be made coarser. The overall result is to adapt

Compute Error r-7

A. Error Calculations

The set of training points to be used for moving nodes is
based on a local error criterion. In the system described
below, the local error was determined from the error in the
divergence of B within an element and this is manifested by
a charge on the element faces.

The process is then one of computing the total error
within the mesh by summing over all the tetrahedra. Next,
the total number of training points to be used is set and a
training point "density" found by dividing by the total error.
Within any one tetrahedron, the global density is multiplied
by the error in the tetrahedron and the volume of the
element. This gives a total number of training points in a
particular tetrahedron and these are placed randomly within
the element.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 11:07:27 UTC from IEEE Xplore. Restrictions apply.

1336

B. Method

Once a set of training points have been established, the
learning algorithm is applied. The neighbourhood radius to
be considered for each training point is limited to 1 since the
size can grow rapidly in three-dimensions - at R=2 the
neighbourhood can consist of over 100 nodes. Within the
context of an adaptive system, there is little point in running
very many epochs. Instead, only two epochs are used with a
being reduced from 0.01 to 0.005 from the first to the second
epoch. It should be noted at this point that the node moving
algorithm requires that nodes on the surfaces of bodies
remain on those surfaces and similarly for edges. Thus there
is a constraint on the movement of those nodes.

Once two epochs have been considered, a Delaunay pass
is applied to the mesh to improve the quality of the elements
and a new solution is calculated.

The process is repeated until the maximum number of
steps is reached. The complete process is shown in Fig. 1.

Iv. RESULTS

The method described above has been implemented in an
experimental three-dimensional finite element analysis code
intended to solve bounded high frequency problems. Two
different geometries have been considered. The first is a
simple resonator system, the second a miter bend waveguide.

A. The Resonator

The resonator consists of a metallic cylinder inside a
metallic box, Fig. 2.. The goal of the analysis is to compute
the resonance frequency of the structure.

The initial mesh was created using an extrusion process
and resulted in a very uniform element distribution
throughout the device. This is shown in Fig. 3. The adaptive

Metallic Box Metallic Box

I
I

Fig. 3. Resonator initial mesh.

Fig. 4. Resonator final mesh.

process was applied for seven steps using two epochs with
the SOFM on each step. The number of training points
generated for the SOFM was set to be 10 times the number
of nodes in the mesh. A neighbourhood of R=l was used in
the first epoch and R=O for the second. The final mesh is
shown in Fig. 4.

The figures show only the surface meshes in both cases
and the number of nodes on the surface in both cases is the
same. The internal re-organization of the mesh follows the
surface change. As can be seen, the system has moved the
nodes towards the end of the cylinder and, on the end face,
the nodes (and elements) have been moved towards the e+’
Note that the total number of nodes in the two i ~ ,

identical. The improvement in the field solution is
demonstrated in Table I where the maximum, minimum and
average errors in the field are given. The error values are
normalized to the average flux density value in the solution
and the system has considerably reduced the maximum error
(by moving the nodes to the edge of the cylinder). However,
the average error has reduced only by a small amount - this

TABLE I .
ERROR IMPROVEMENT FOR RESONATOR

Initial Mesh Final Mesh
Maximum Error 269% 206%
Minimum Error 0.0036% 0.0006%

7.53% 7.15%

.___________.......________.......-.------

Fig. 2. Wireframe drawing of the resonator.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 11:07:27 UTC from IEEE Xplore. Restrictions apply.

1337

Fig. 5. Initial mesh for the miter bend.

Fig. 6. Final mesh for the miter bend.

is due to the fact that the edge is only a small proportion of
the total volume of the problem.

As a comparison, the resonator was also solved using a
conventional mesh refinement (h-type) adaptive system
using the same error criteria. In each refinement step, the
5% worst tetrahedra (in terms of the error) were refined. The
results are shown in Table I1 in terms of the error in the
resonant frequency. As can be seen, the mesh re-
organization process provides a major gain in accuracy for a
given computational cost. While the mesh refinement system
can give better results, it does so at a massive increase in
computational cost.

B. The Miter Bend

The second geometry is a basic miter bend in a
waveguide. The initial and final meshes are shown in Fig. 5
and Fig.6. The same values were used for the SOFM
parameters as in the resonator case. In this problem, the
desired outputs were the S parameters for the model. In total
4 passes through the adaptive system were made. Although

TABLE 11.
COMPARISON OF PERFORMANCE BETWEEN SOFM AND REFINEMENT FOR

RESONATOR

Method No. of tets Freq (GHz) Error
Initial 14860 1.8204 2.166%
SOFM 14860 1.8449 0.848%
5% refined 20852 1.8565 0.227%
10% refined 32313 1.8607 O.OOO%

the change in the mesh structure is much less than in the
resonator case, the small movements in the node positions
actually had a major effect on the errors as can be seen in
Table III.

V. CONCLUSIONS

The use of a self-organizing feature map as a method of
mesh adaptation has been described. The intention is to
produce an adaptive system which can improve the accuracy
of a solution without an increase in the number of nodes
being used, This leads to a reduction in both the amount of
memory required and the cpu times taken to achieve a
required error level. Even with the explosive growth in
computational capabilities, this is important especially when
the solutions of three-dimensional structures either in the
high frequency domain or for low frequency induced current
problems. In both cases, full vector solutions become
necessary and the number of unknowns expands rapidly with
the number of nodes.

Of course, for a given number of nodes in the mesh, there
is a limit to the minimum error which may be achieved and,
at some point, if a further reduction in error is required,
there is little choice but to refine the mesh with the addition
of new nodes or an increase in the polynomial order. Thus a
realistic system would probably use a combination of
conventional h or p adaptation coupled with the scheme
described here.

The main disadvantage of the SOFM approach is the time
taken to “train” the mesh. Depending on the number of
nodes inserted in a typical h refinement step, the cpu costs of
re-organizing compared to node insertion plus solution may
be very similar. However, the gain in memory requirements
may result in an overall faster solution time if the entire
problem can be fitted into main memory, thus removing the
requirement to use virtual memory.

REFEFtENCEs

T.Kohonen, Self-organizing and associative memory, 3d ed., Springer-
Verlag, Berlin, 1989.
C.H.Ahn, S.S.Lee, H.J.Lee, S.Y.Lee, “A self-organizing neural network
approach for automatic mesh generation,” IEEE Transactions on
Magnetics, Vol. 27, pp. 42014204, September 1991.
J.Pedroux, D.A.Lowther, “Kohonen Maps and Automatic Mesh Generation
in Two and Three Dimensions,” Proceedings of the Yh International
IGTESymposium, Graz, Austria, pp. 206-211, September 1996.
W.Mai, D.A.Lowther, “On Automatic Mesh Generation using Kohonen
Maps,” IEEE Transactions on Magnetics, Vol. 34, pp. 3391-3394,
September 1998.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 11:07:27 UTC from IEEE Xplore. Restrictions apply.

