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Abstract-This paper presents a method of predict- 
ing the eddy-current distribution in transverse flux in- 
ductive heating devices (TFIH) with the help of one 
neural network. A second neural network is used 
to obtain the temperature distribution in the thin 
moving conducting sheet caused by the eddy-current 
losses. Both solutions are initial solutions for the fl- 
nite element calculations of this non-linear coupled 
electromagneto-thermal problem. 
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I .  INTRODUCTION 

The transverse flux inductive heating device contains 
symmetrically placed coils on both sides of the non- 
ferromagnetic moving sheet as shown in Fig. 1. The cur- 
rents in two opposite coils are in phase and produce a 
magnetic field perpendicular to the surface of the work- 
piece. This field induces eddy-currents in the thin con- 
ducting sheet. The caused losses warm the material up 
continously. 

Compared to longitudinal induction heaters a much 
lower frequency can be used resulting in a higher elec- 
trical efficiency, which is why transverse flux heaters are 
given priority heating thin strips. 

The main disadvantage of the TFIH is the resulting in- 
homogeneous temperature distribution. To improve the 
device, the coil geometry can be changed by parameter 
variations or optimization procedures, e.g. genetic algo- 
rithms. Every optimization step requires the calculation 
of both the eddy-current and the temperature distribu- 
tion for the proposed geometry, usually with the finite 
element method (FEM) [l], [2]. Creating the three di- 
mensional meshes and solving the coupled problems are 
very time consuming tasks. Adaptive remeshing based on 
the solution causes additional computational effort. 

At the beginning of optimization processes the search 
space is scanned with thousands of parameter trials to 
get a rough idea of the problem. In this phase the solu- 
tions don’t need to be exact, but they should be evaluated 
rapidly. 
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This paper proposes methods in order to reduce the 
time of optimization by the use of neural networks. They 
predict both the magnetic field and temperature distribu- 
tion taking geometrical data as input. 

In this paper the proposed methods of both the eddy- 
current and temperature calculation by the neural net- 
works are presented, and the combination with the finite 
element modelling along with results of this non-linear 
coupled electro-thermal problem. 

11. THE NEURAL NETWORK IMPLEMENTATION 

For this paper feedforward nets trained by backpropa- 
gation are chosen. The signals flow from the input layer 
to the output layer, in a forward direction using several 
hidden layers [3], [4]. 

The considered coupled problem consists of two main 
numerical problems, i.e. an electromagnetic and a thermal 
one. For each problem an appropriate neural network is 
used with different input variables, which are explained 
in the following subsections. 

A .  Prediction of the eddy-currents 

The electromagnetic problem is defined by the geom- 
etry, the enforced currents in the coils and the material 
parameters. The solution is the eddy-current distribu- 
tion in the moving sheet. The frequency used causes a 
penetration depth smaller than the thickness of the sheet, 
what leads to a two-dimensional current distribution valid 
for the depth of the sheet. In rough approximation, the 
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Fig. 1. The principle of the transverse flux inductive heating device 
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distribution of the losses of the induced currents, the ve- 
locity, the width and the material parameters of the sheet. 
The result is the temperature field. The following discus- 
sion assumes constant material properties of brass and 
the velocity to be fixed leading to a steady state solu- 

Thermal conductivity is considered. Because of the 
thin material the temperature is constant across the 
h leading again to a two-dimensional solution. The 

heet enters the device with a constant initial tempera- 

The prediction of the temperature distribution is based 
on a second feedforward neural network. The output layer 
is again only one neuron representing the temperature 
value at a specific point on the workpiece, marked 19, in 
Fig. 3. This value depends on the temperature values and 
the loss density around that point. The value of velocity 
chosen prevents a heat flow against the moving direction. 
Therefore only the temperature values O l e f t ,  d c e n t e r  and 

in Fig. 3 influence the value 8, by heat flow, which 
are three units of the input layer of the neural network. 

Fig. 2. The angles defining the local position on the sheet relative 
to the conductors 

currents induced in the strip are a projection of the coil 
geometry onto the strip surface [51. This paper takes ad- 
vantage of that effect and trains-the dependencies to a 
neural network with the aim to guess a good solution. 

In order to take the geometrical dependencies into ac- 
count each training set of the neural network represents 
one point on the surface of the strip, defined by different 

The dependency of the loss density is taken into account 
by calculating the total losses in the 4 quadrants given by 
the neighboring elements. Four more neurons represent 
the total losses w1, w2, wg and w4. 

angles, measures and other geometrical parameters partly 
shown in Fig. 1 and 2. The angles cy, ,6 and y describe 
the position relative to the conductors, which helps the 

The heights and widths of the quadrants influence the 
heat flow. Therefore, four more neurons are added to the 
input layer leading to a total of 11 units. 

artificial network to learn that the absolute value of the 
eddy-currents in the sheet reaches its maximum under the 
conductors while it vanishes between them. Each angle is 
represented by one unit of the input layer. 

Close to the corner of the inductor the induced currents 
don’t follow the periodical distribution of the middle part 
because of the end effects while they vanish far outside. 
Another input unit of the neural network takes care of this 
end effect. The activation depends on the distance of the 
location to the last conductor (marked d in Fig. 2). An 
additional unit (e) represents the distance to the edge of 
the workpiece where the induced currents are constrained 
to a smaller space and the current density rises. The 

Special attention is given to the boundaries of the 
squared region of the sheet, i.e. the entrance and exit of 
the device and the two remaining edges. Concerning the 
neural network the points on these corners lack one or 
more of both the temperature value points ( d l e f t ,  d c e n t e r i  

dright) and the quadrants (w1, wg, w3, wq). Because on 
these boundaries no heat transfer to the outside is as- 
sumed, i.e. the gradient vanishes, the value of losses in 
the outside quadrant is set equal to the appropriate value 
in the inside quadrant. For the points on the entrance 
edge the preceding outside values of the temperature are 
set to the initial temperature. 

same applies to the coil head windings leading to two more 
input neurons. In total the input layer contains 7 neurons. 

The output layer consists of one single unit which acti- 
vation stands for the absolute value of the eddy-currents 
at the considered location. 

The learning points are the nodes of the finite element 
representation of the sheet leading to about 30 000 train- 
ing sets. While one data set is connected to the input 
layer the output is compared to the value of the eddy- 
currents at this point and the weights are updated with 
the backpropagation algorithm. 

B. Prediction of the temperature distribution 

The region of interest for the thermal problem is the 
body of the moving sheet. The problem is stated by the 

Fig. 3. Input data used for the temperature extimation shown in a 
partial view of a triangle mesh 
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111. THE FLOW OF CALCULATION 

Two main applications arise for the proposed neural 
network implementation. 

On the one side the proposed networks are used purely 
to get a rough solution for both the eddy-current and the 
temperature distribution. This is of interest in the field of 
optimization, where especially at the beginning fast but 
not neccessarly exact solutions are demanded. 

On the other hand the entire coupled problem can be 
solved with the finite element method using the trained 
networks to improve the convergence. The electromag- 
netic part uses the conductivity of the workpiece, which 
depends on the temperature. The algorithm of solving 
this weak coupled problem with the finite element method 
is shown in Fig. 4 on the right hand side and given by 

-v . (XV.9) + QCV'V.9 + E(8 - 8,) = w. (4) 
a 

After solving the electromagnetic problem with the 
T - R method using the boundary impedance z, = f(a) 
and the enforced currents Je (1)-(3) and calculating the 
losses w as function of the eddy-currents, the tempera- 
ture distribution 29 is evaluated (4) [6] ,  [7]. w stands for 
the angular frequency, X for the thermal conductivity co- 
efficient, c for the heat capacity, Q for the mass density, Q 

and 2a represent the coefficients of heat transmission and 
the thickness of the workpiece respectively. 

Then the temperature dependency of the conductivity 
o is considered. This is solved iteratively until the changes 
of the temperature field A8 fall below a tolerance value E .  

The solution of the neural networks, i.e. the temperature 
distribution speeds up the entire process, because a rather 
good value for the conductivity for each finite element is 

I d 

Fig. 4. The flow of calculation combining FEM and the proposed 
neural networks 

a 

Fig. 5.  The propagated current distribution in the sheet (half width) 

known in advance and an initial solution for the thermal 
part of the problem is provided as well. 

IV. RESULTS 

The neural networks are fed with training data obtained 
by finite element calculations. Two different devices are 
used, one with coils parallel to  the moving direction shown 
in Fig. 1, and a second device with the coils turned by 15 
degrees. A set of solutions is obtained by varying the 
sheet width. 

The next two subsections discuss the learning ability 
of the proposed implementation of the neural networks. 
Then a top-down algorithm of temperature propagation 
is introduced. Finally the combination of the FEM and 
the neural networks is presented. 

A .  Eddy-currents 

Fig. 5 shows the propagated eddy-current distribution. 
The neural net was given a problem with a sheet width 
not used during the training. The ability of propagating a 
good result is measured as the residual difference between 
the proposed and the finite element result. This leads to 
a deviation of 9 % [8].  

B. Temperature 

Fig. 6 displays both the estimated temperature value 
for each node of the FE mesh and the accompanying rel- 
ative error compared to the reality, i.e. a FEM solution. 
Each temperature value is obtained by giving the neural 
network the losses and the previous temperature values 
taken from the FEM solution. This allows verification 
of the ability to give reasonable responses to the input. 
The relative error is mostly below 0.4 %, but show peaks 
up to 2.8 %. The distribution of these peaks is remark- 
able. They fall geometrically on regions where the mesh 
is coarse, and hence less training data is available. The 
overall residual error is 0.8 %. 
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Fig. 6. The temperature field propagated by the neural network and 
the relative error on top [%] 

C. Top-down 

Note that the temperature distribution of Fig. 6 is not 
the answer to the question of whether a neural network 
can estimate the temperature field of an TFIH device. 
The reason is that every value in Fig. 6 is obtained with 
input values & e f t ,  etop and $right taken from a FEM so- 
lution, which is actually the desired result. 

To acquire a solution from scratch, the temperature 
field is calculated top-down, i.e. in moving direction. The 
nodes at the entrance of the device are initialized to the 
ambient temperature, the others are propagated row by 
row. 

The relative error for both geometries is plotted in 
Fig. 7, which reveal the error propagation in direction of 
motion. The right graphic belongs to Fig. 6. The relative 
error lies mostly below 4 % but reaches values up to 40 %. 

D. Improving the Convergence of the FE Calculations 

Now, both neural networks are used in sequence to ob- 
tain the temperature field from scratch given only the 
geometry and the enforced currents. According to Fig. 4 
this is used as the initial solution for the FE calculations. 

Applied to this device the number of iteration was re- 
duced from 6 to 3. Also the first FE temperature compu- 
tation converged noticeably faster than the one using the 
usual initial solution, where the entire temperature field 
is set to the ambient temperature. 

Fig. 7. Relative error [%] ofthe temperature distribution between a 
finite element solution and the neural network estimation using the 
top-down method. Left: straight coils, right: turned coils 

V. CONCLUSIONS 

This paper presents the implementation of two neural 
networks to estimate the eddy-current and temperature 
distribution in a transverse flux inductive heating device. 
The first neural network is trained to respond to geo- 
metric information to give the eddy-current distribution 
from scratch. Then the second one provides the temper- 
ature depending on neighboring temperature values and 
induced losses. 

The results presented show a quite good accuracy of the 
estimated solutions. This allows the use of the proposed 
method in order to get the distribution, which is not of 
the accuracy of finite element calculations but obtained 
very fast. The solution time of the finite element method 
is reduced in this application by initializing with the es- 
timated distributions, which speeds up the optimization 
processes. Further investigation could reduce the overall 
error by implementing more input neurons. 
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