
IEEE TRANSACTIONS ON MAGNETICS, VOL 34, NO. 5, SEPTEMBER 1998 

On Automatic Mesh Generation using Kohonen Maps 
D. A. Lowther 

CADLab, Electrical Engineering Department 
McGill University, Montreal, Canada 

W. Mai 
Institut fur Elektrische Maschinen, RWTH Aachen, Germany 

3391 

Abstract-This paper presents the use of Kohonen 
self-organizing maps for automatic mesh generation. 
Previous algorithms are improved by adding a new 
search algorithm and boundary treatment. The re- 
sults of small geometrical examples are shown. Inves- 
tigations into parameter variations support the dis- 
cussion about advantages and disadvantages of this 
method. 

Index terms-Self-organizing feature maps, Finite 
element methods, Neural networks, Automatic mesh- 
ing, Computer aided engineering 

I. INTRODUCTION 

The generation or modification of finite-element meshes 
is part of the analysis of electromagnetic devices. Meshes 
are produced from scratch or from existing nets, as in 
adaption processes. Both the algorithm for meshing and 
the handling of the information about the desired element 
sizes in the mesh region varies among different methods. 
There are mainly three different methods for the user to 
define the desired mesh density: 

1. The user chooses a global maximum element size in 
the mesh region. This region is the entire geometry or 
parts of it defined by shape primitives such as polygons 
or circles. 

2. The user sets the number of nodes on the outlines 
of the mesh regions. Although mesh generators take care 
of the inner parts, the user can not influence the mesh- 
ing there. Especially large sections with varying desired 
element density have to be cut into smaller ones. 

3. The user specifies a density of points, which are 
spread over the entire geometry, defines the desired el- 
ement sizes, and indicates where regions of high density 
should result in a fine mesh. This kind of information can 
also be provided by automatic algorithms such as neural 
networks [l] or error calculations in adaptive meshing. 

This paper examines the self organizing maps proposed 
by Kohonen [2], which use the third approach to rep- 
resenting the required density information, and are de- 
scribed in the next section. 

Manuscript received November 3, 1997. 
D. A. Lowther, e-mail D-LowtherQcompuservexom; 
W. Mai. e-mail maiQrwth-aachen.de. 

11. METHOD OF SELF-ORGANIZING MAPS 

A self-organizing map is a special neural network with 
partially connected neurons. According to  a radius R a 
neuron has a defined number of neighboring neurons in 
what is called a "neighborhood" shown in fig. 1. 

This paper interprets this interconnection topology as 
finite element information, i.e. the neurons are the nodes 
and the interconnections between them are the edges of 
triangular elements. Kohonen self-organizing maps have 
the property to preserve this during the learning process. 

In a Kohonen network, two spaces are considered: the 
topological space of uniformly positioned neurons with 
fixed interconnections and the geometric space of physical 
locations of the nodes. The geometric node locations are 
represented by the weights applied to each neuron and the 
Kohonen network provides, in effect, a variable mapping 
between the two spaces over the entire mesh. 

Thus, the weight vector for one neuron consists of 
two or three components for two-dimensional or three- 
dimensional meshes respectively [a ] .  These weights are 
the output of the network and are affected by the input 
to the network (the set of training points). Each training 
point provides a set of coordinates (weights) which are 
created based on the desired density distribution. 

A .  The learning algorithm 

The neural network starts with an initial mesh obtained 
from a simple mapping algorithm, an adaptive meshing 
process or a neural network mesh generator [3]. A training 
set is given representing the desired mesh density shown 
in fig. 2. Then one training weight is presented to the 
network a t  a time. The training weight (i.e. coordinate 

Fig. 1. The topological neighborhood (R=O, 1, 2) 

0018-9464/98$10.00 0 1998 IEEE 

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 10:43:11 UTC from IEEE Xplore.  Restrictions apply. 

http://maiQrwth-aachen.de


3392 

. . . . '  
. ~. . . .  

Fig. 2. Example of the density distribution 

vector) is connected to the input of each neuron in the 
net simultaneously, which is different to the more classical 
feed forward net, where the training data are introduced 
to an input layer of neurons. 

Unlike other neural networks the weights of the neu- 
rons are not calculated by the weighted sum of the input. 
Neither i s  every neuron updated when a training set is 
given [4]. The network updates only a "winning" neuron 
and a defined neighborhood. 

The winning neuron N ,  is defined as the closest neuron 
to the training point based on the Euclidean distance. 
This neuron is surrounded by a topological neighborhood 
shown for different radii in fig. 1. Both the winner and the 
members of the neighborhood of the radius R are updated 
according to the following rule: 

wzk = w,k(old) + 4.1 . (m - wzle(old)) (1) 

Where xtk i s  the coordinate vector of the training point t ,  
wzk the weights of the considered neuron (in effect the cur- 
rent position in geometric space of the neuron) and a(e)  
a deceleration factor, which is gradually reduced as the 
training proceeds. IC is the component of the coordinate 
vector. 

The entire algorithm is described as follows: One train- 
ing point is given to the net and the closest neuron has to 
be searched and updated along with its neighborhood. An 
epoch is defined as the period over which all the training 
points are presented to the net. The entire process tries 
to reduce the sum of minimum Euclidean distances e by 
repeating epochs until a stopping criterion is reached: 

e = J(xtl  - wc1)2 + ( ~ 2  - ~ 2 1 2  < E,,, (2) 
t 

Where wcl and wc2 are the coordinates of the closest neu- 
ron to the training point xt shown for the two dimensional 
case. This updating algorithm moves the neurons near to 
the training point, wheres a(e)  is chosen arbitrarily high 
at the beginning of the process to provide a fast movement 
of the mesh. 

At the start of the learning process the radius of the 
neighborhood is choosen to be R = 2.  Therefore also neu- 
rons close to the winning one are effected and move in the 

direction of the training point. This movement may pro- 
duce overlapping elements and this problem is discussed 
in the next section. The radius of the neighborhood de- 
creases as the epochs are repeated. This reflects the idea, 
that the rough shape of the net is found with a larger 
radius while the final tuning needs the radius R = 0, i.e. 
only the winning neuron. 

B. Edge and Element Treatment 

Because the training points lie within the region to be 
meshed, the learning process results in a mesh, which lacks 
neurons on the border of the mesh region [ 5 ] .  To avoid this 
effect the neurons on the edges in the network could be 
fixed [6], i.e. they can not move at all. But this prevents 
the mesh from shifting appropriately in order to reflect the 
given density of training data. Better results are obtained 
in this paper by allowing the neurons to move along the 
border but not into the interior area. This is implemented 
in the updating formula by determining the coordinates 
x,k on the specific outline with minimum distance to the 
training point. Then x,k is taken in place of xtk in (1). 

During the learning process groups of these borderline 
neurons move towards the corners of the bordering poly- 
gon and get stuck. A new algorithm concerning the cor- 
ners is added, which allows the neurons close to corners of 
the boundary to jump to the adjoining edge. Fig. 3 shows 
this case, where the neuron n3 on the edge chooses the 
line closest to the training point Tp to move on using the 
algorithm explained above. To preserve the predefined 
geometry the neighboring neuron 7x2 on the opposite line 
jumps to the corner. 

The usage of Kohonen's updating rule (I) without any 
restrictions can result immediately in a mesh containing 
overlapping elements, because all nodes in the neighbor- 
hood move directly towards the training point regardless 
of the topology. While the learning process is running, the 
neural net tries to  find a stable state without any topo- 
logical error. The investigations revealed that there is no 
guarantee that the minimization process results in an er- 
ror free mesh. In other words, the primary condition of 
this minimization problem, i.e. producing topologically 
correct meshes, is not satisfied when a best solution is 
found. Using only the stopping criterion ( 2 )  may finally 
result in incorrect meshes. To avoid this topological prob- 
lem a neuron is updated only if this does not produce any 

Fig. 3. Edge treatment: a) before and b) after update 

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 10:43:11 UTC from IEEE Xplore.  Restrictions apply. 



3393 

/ 

Fig. 4. The search algorithm (start: l3, trainweight: Tp,  final search 
area 0, closest neuron: N , ,  search path: 1 , 2 , 3 )  

overlapping elements, so the process handles correct solu- 
tions only and ( 2 )  can be used as stopping rule. 

111. THE SEARCHING ALGORITHM 

The neuron closest to the training vector has to  be 
found and chosen as the winner. The simplest algorithm 
for calculating the distances between the training vector 
and every neuron in order to find the closest one is of or- 
der O(n).  Because parameter variations result in a linear 
dependency between the number of training points and 
neurons, the entire process is of order O(n2)  for an epoch. 

To reduce the order, the searching algorithm for the 
winner is changed to include topological knowledge. Tak- 
ing the information about the neuron’s neighbors into ac- 
count results in a more efficient search for the winner. 

The algorithm starts with a randomly chosen neuron 
and the distances to the training point of both the neuron 
and all its neighbors are calculated (fig. 4). The neuron, 
which is closest to  the training point, is chosen as the next 
neuron in the search path. This continues until a neuron 
N,  is found, whose neighbors are farther away than the 
neuron itself. 

Note, that unlike Kohonen’s approach, the topological 
information of the mesh can be used because every mesh is 
topologically correct according to the element treatment 
explained in the last section. 

Subsequent routines handle the case of topological ex- 
ceptions: The last neuron in the search path N,  is not 
neccessarily the closest one because another neuron which 
is not a neighbor of N, could be closer. The area of possi- 
ble candidates is the region of a circle around the training 
point with the radius T,N,. An algorithm starts with the 
neuron N ,  and finds all triangles which are part of the 
circle. If there is a node of these elements found inside 
the circle it is chosen as N ,  and the algorithm restarts. 
Otherwise the neuron N, is finally chosen as the winner. 

Each winner is saved as the start neuron for the cor- 
responding training point in the next epoch. The entire 
method reduces the search to  a few steps independent of 
the number of nodes. 

- 

Fig. 5. The final mesh after 113 epochs 

IV. RESULTS 

Fig. 5 shows the converged self-organizing feature net 
after 113 epochs when the stopping criterion was reached. 
The similarity between the element and training set den- 
sity of fig. 2 is clearly visible. The outer neurons, i.e. 
nodes, glided along the borderline towards the high den- 
sity region. Mostly the elements are well shaped, but 
there are longish ones in the middle, resulting from the 
fixed topology between the neurons. 

Extensive parameter variations concerning the choice of 
the radius of the neighborhood, the factor .(e) and the 
number of training nodes have been done. A criterion of 
comparison is the final sum of Euclidean distances E be- 
tween each training point and the corresponding closest 
neuron using ( 2 ) .  The smaller this sum the more simular 
is the final mesh to the training set. Fig. 6 shows E (re- 
lated to €0 of the start mesh) for different numbers of used 
epochs of R = 2 and R = 1. It indicates that the error in 
the mesh density generated compared to that desired is 

7 o h  

Fig. 6 .  Sum of minimum Euclidean distances for different number 
of used epochs for R = 2 (abscissa) and R = 1 (ordinate) 

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 10:43:11 UTC from IEEE Xplore.  Restrictions apply. 



3394 

Fig. 7. The mesh with overlapping elements Fig. 9. The  final net with 2 regions 

highly dependent on the second radius (R = 1) while the 
first radius ( R  = 2 )  has little effect. It was found that the 
number of training points is best chosen to be twice the 
number of neurons. 

Fig. 7 plots the final mesh produced without the topol- 
ogy check. The visible overlapping elements did not van- 
ish during the updating process. 

The method also handles concave regions well because 
of both the topological check and the special edge treat- 
ment. Fig. 8 displays the final mesh of an L-shaped region 
where the lower right corner was filled stepwise with a high 
density of training data. Also this mesh reflects the de- 
sired element density well. But it reveals the major draw- 
back of this method, which is the fixed topology. Starting 
with a quite regular mesh in a complex shaped geometry, 
big differences in the density of the training data satisfy 
the expections but produce stretched elements. However, 
these elements could be removed by applying the Delau- 
nay criterion to the mesh in a post-processing pass. An- 

Fig. 8. The final net for a concave region 

other example is shown in fig. 9 where two regions are 
remeshed simultaneously to a peak of density in the lower 
left part. The elements can neither move into another re- 
gion nor is the topology cut to let the elements pass on 
both sides around the inner region. 

Also taking into account that the Kohonen self- 
organizing feature map needs an initial mesh restricts the 
potential usage mainly to geometries which can be meshed 
quickly with a mapping algorithm, or to the field of adap- 
tive remeshing. 

V. CONCLUSIONS 

An improved mesh generation algorithm using self- 
organizing maps is presented, where the desired element 
size is given as a density of points in the meshing region. 
The results show a complexity of almost O(n)  for the pro- 
cess. The final meshes reveal a agreement with the train- 
ing data. Also examples of concave regions are handled 
well. Although disadvantages are the difficult choice of 
parameters and the fixed topology. 

REFERENCES 

[l] R. Chedid, N Najjar, ”Automatic finite-element mesh genera- 
tion using artificial neural networks - part I: prediction of mesh 
density”. IEEE Tmns Magn,  vol 32, no 5, pp 5173-5178, 
September 1996. 

[2] T. Kohonen, ”Self-organizing and associative memory”, 3rd ed., 
Springer-Verlag, Berlin, 1989 

[3] D.A. Lowther, D.N. Dyck, ” A  density driven mesh generator 
guided by a neural network”, IEEE Trans. Magn., vol. 29, no 2, 
pp. 1927-1930, March 1993. 

[4] L. Fausett, ”Fundamentals of neural netw.”, Prentice Hall, 1994 
[5] 3. Pechoux, D.A. Lowther, ”Kohonen maps and automatic mesh 

generation in two and three dimensions”, Proceedzngs of the 
7th Internatzonal I G T E  Symposzum, Graz, Austria, September 
1996, pp. 206-211. 

[6] Chang-Hoi Ahn, Sang-Soo Lee, Hyuek-Jae Lee, Soo-Young Lee, 
” A  self-organizing neural network approach for automatic mesh 
generation”, IEEE Trans. Magn., vol. 27, no 5, pp. 4201-4204, 
September 1991. 

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 10:43:11 UTC from IEEE Xplore.  Restrictions apply. 


